Base field \(\Q(\sqrt{13}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 3 \); class number \(1\).
Elliptic curves in class 81.2-a over \(\Q(\sqrt{13}) \)
Isogeny class 81.2-a contains 2 curves linked by isogenies of degree 3.
Curve label | Weierstrass Coefficients |
---|---|
81.2-a1 | \( \bigl[0\) , \( a\) , \( a\) , \( 2 a - 3\) , \( 10 a - 24\bigr] \) |
81.2-a2 | \( \bigl[0\) , \( a\) , \( a\) , \( 2 a\) , \( a\bigr] \) |
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)