Properties

Label 2.2.13.1-52.1-b1
Base field \(\Q(\sqrt{13}) \)
Conductor norm \( 52 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{13}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, -1, 1]))
 
gp: K = nfinit(Polrev([-3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-213{x}-1257\)
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([1,0]),K([-213,0]),K([-1257,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([1,0]),Polrev([-213,0]),Polrev([-1257,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,0],K![1,0],K![-213,0],K![-1257,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-4a+2)\) = \((2)\cdot(-2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 52 \) = \(4\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-125497034)\) = \((2)\cdot(-2a+1)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 15749505542797156 \) = \(4\cdot13^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1064019559329}{125497034} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{280}{9} : \frac{2197}{27} a - \frac{1532}{27} : 1\right)$
Height \(1.3834480278188076609662078599889399999\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.3834480278188076609662078599889399999 \)
Period: \( 0.38559796534058063989835256461682483678 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 0.59181490310407225340424906811548063026 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-2a+1)\) \(13\) \(2\) \(I_{14}\) Non-split multiplicative \(1\) \(1\) \(14\) \(14\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 52.1-b consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 26.b1
\(\Q\) 338.a1