Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
36.3-a1 36.3-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.759892509$ 1.053781309 \( -\frac{1250637664527933}{32} a - \frac{1629300280935823}{32} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( -85 a + 94\) , \( -352 a + 209\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-85a+94\right){x}-352a+209$
36.3-a2 36.3-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $34.19516291$ 1.053781309 \( -\frac{461373}{2} a - \frac{601423}{2} \) \( \bigl[a\) , \( a + 1\) , \( 1\) , \( -a - 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-a-1\right){x}$
36.3-a3 36.3-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $2.279677527$ 1.053781309 \( -\frac{1680914269}{32768} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -124 a - 173\) , \( -1087 a - 1405\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-124a-173\right){x}-1087a-1405$
36.3-a4 36.3-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.799462546$ 1.053781309 \( \frac{461373}{2} a - 531398 \) \( \bigl[1\) , \( -a\) , \( a\) , \( -4 a - 4\) , \( -15 a - 20\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-4a-4\right){x}-15a-20$
36.3-a5 36.3-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $11.39838763$ 1.053781309 \( \frac{1331}{8} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( a + 2\) , \( 3 a + 4\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(a+2\right){x}+3a+4$
36.3-a6 36.3-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $6.839032582$ 1.053781309 \( \frac{1250637664527933}{32} a - \frac{719984486365939}{8} \) \( \bigl[a\) , \( a + 1\) , \( 1\) , \( 114 a - 191\) , \( -670 a + 1528\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(114a-191\right){x}-670a+1528$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.