Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
36.3-a1
36.3-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.3
\( 2^{2} \cdot 3^{2} \)
\( 2^{10} \cdot 3^{6} \)
$0.78920$
$(-a+1), (2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3B.1.2 , 5B.4.2
$1$
\( 5 \)
$1$
$0.759892509$
1.053781309
\( -\frac{1250637664527933}{32} a - \frac{1629300280935823}{32} \)
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( -85 a + 94\) , \( -352 a + 209\bigr] \)
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-85a+94\right){x}-352a+209$
36.3-a2
36.3-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.3
\( 2^{2} \cdot 3^{2} \)
\( 2^{2} \cdot 3^{6} \)
$0.78920$
$(-a+1), (2)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3B.1.1 , 5B.4.1
$1$
\( 1 \)
$1$
$34.19516291$
1.053781309
\( -\frac{461373}{2} a - \frac{601423}{2} \)
\( \bigl[a\) , \( a + 1\) , \( 1\) , \( -a - 1\) , \( 0\bigr] \)
${y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-a-1\right){x}$
36.3-a3
36.3-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.3
\( 2^{2} \cdot 3^{2} \)
\( 2^{30} \cdot 3^{6} \)
$0.78920$
$(-a+1), (2)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3Cs.1.1 , 5B.4.2
$1$
\( 3 \cdot 5 \)
$1$
$2.279677527$
1.053781309
\( -\frac{1680914269}{32768} \)
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -124 a - 173\) , \( -1087 a - 1405\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-124a-173\right){x}-1087a-1405$
36.3-a4
36.3-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.3
\( 2^{2} \cdot 3^{2} \)
\( 2^{2} \cdot 3^{6} \)
$0.78920$
$(-a+1), (2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3B.1.2 , 5B.4.1
$1$
\( 1 \)
$1$
$3.799462546$
1.053781309
\( \frac{461373}{2} a - 531398 \)
\( \bigl[1\) , \( -a\) , \( a\) , \( -4 a - 4\) , \( -15 a - 20\bigr] \)
${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-4a-4\right){x}-15a-20$
36.3-a5
36.3-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.3
\( 2^{2} \cdot 3^{2} \)
\( 2^{6} \cdot 3^{6} \)
$0.78920$
$(-a+1), (2)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3Cs.1.1 , 5B.4.1
$1$
\( 3 \)
$1$
$11.39838763$
1.053781309
\( \frac{1331}{8} \)
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( a + 2\) , \( 3 a + 4\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(a+2\right){x}+3a+4$
36.3-a6
36.3-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.3
\( 2^{2} \cdot 3^{2} \)
\( 2^{10} \cdot 3^{6} \)
$0.78920$
$(-a+1), (2)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3B.1.1 , 5B.4.2
$1$
\( 5 \)
$1$
$6.839032582$
1.053781309
\( \frac{1250637664527933}{32} a - \frac{719984486365939}{8} \)
\( \bigl[a\) , \( a + 1\) , \( 1\) , \( 114 a - 191\) , \( -670 a + 1528\bigr] \)
${y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(114a-191\right){x}-670a+1528$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.