Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
36.2-a1
36.2-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.2
\( 2^{2} \cdot 3^{2} \)
\( 2^{10} \cdot 3^{6} \)
$0.78920$
$(-a), (2)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3B.1.1 , 5B.4.2
$1$
\( 5 \)
$1$
$6.839032582$
1.053781309
\( -\frac{1250637664527933}{32} a - \frac{1629300280935823}{32} \)
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -113 a - 80\) , \( 590 a + 599\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-113a-80\right){x}+590a+599$
36.2-a2
36.2-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.2
\( 2^{2} \cdot 3^{2} \)
\( 2^{2} \cdot 3^{6} \)
$0.78920$
$(-a), (2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3B.1.2 , 5B.4.1
$1$
\( 1 \)
$1$
$3.799462546$
1.053781309
\( -\frac{461373}{2} a - \frac{601423}{2} \)
\( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 3 a - 8\) , \( 14 a - 35\bigr] \)
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3a-8\right){x}+14a-35$
36.2-a3
36.2-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.2
\( 2^{2} \cdot 3^{2} \)
\( 2^{30} \cdot 3^{6} \)
$0.78920$
$(-a), (2)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3Cs.1.1 , 5B.4.2
$1$
\( 3 \cdot 5 \)
$1$
$2.279677527$
1.053781309
\( -\frac{1680914269}{32768} \)
\( \bigl[a\) , \( 0\) , \( 0\) , \( 124 a - 297\) , \( 1087 a - 2492\bigr] \)
${y}^2+a{x}{y}={x}^{3}+\left(124a-297\right){x}+1087a-2492$
36.2-a4
36.2-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.2
\( 2^{2} \cdot 3^{2} \)
\( 2^{2} \cdot 3^{6} \)
$0.78920$
$(-a), (2)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3B.1.1 , 5B.4.1
$1$
\( 1 \)
$1$
$34.19516291$
1.053781309
\( \frac{461373}{2} a - 531398 \)
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 2 a - 5\) , \( -5 a + 11\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2a-5\right){x}-5a+11$
36.2-a5
36.2-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.2
\( 2^{2} \cdot 3^{2} \)
\( 2^{6} \cdot 3^{6} \)
$0.78920$
$(-a), (2)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3Cs.1.1 , 5B.4.1
$1$
\( 3 \)
$1$
$11.39838763$
1.053781309
\( \frac{1331}{8} \)
\( \bigl[a\) , \( 0\) , \( 0\) , \( -a + 3\) , \( -3 a + 7\bigr] \)
${y}^2+a{x}{y}={x}^{3}+\left(-a+3\right){x}-3a+7$
36.2-a6
36.2-a
$6$
$45$
\(\Q(\sqrt{13}) \)
$2$
$[2, 0]$
36.2
\( 2^{2} \cdot 3^{2} \)
\( 2^{10} \cdot 3^{6} \)
$0.78920$
$(-a), (2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3, 5$
3B.1.2 , 5B.4.2
$1$
\( 5 \)
$1$
$0.759892509$
1.053781309
\( \frac{1250637664527933}{32} a - \frac{719984486365939}{8} \)
\( \bigl[a + 1\) , \( a - 1\) , \( a\) , \( 87 a + 6\) , \( 358 a + 111\bigr] \)
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(87a+6\right){x}+358a+111$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.