Base field \(\Q(\sqrt{13}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 3 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, -1, 1]))
gp: K = nfinit(Polrev([-3, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([0,0]),K([-137,-97]),K([174,141])])
gp: E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([0,0]),Polrev([-137,-97]),Polrev([174,141])], K);
magma: E := EllipticCurve([K![1,1],K![0,1],K![0,0],K![-137,-97],K![174,141]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((33)\) | = | \((-a)\cdot(-a+1)\cdot(11)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 1089 \) | = | \(3\cdot3\cdot121\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((43923a-43923)\) | = | \((-a)\cdot(-a+1)^{2}\cdot(11)^{4}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 5787689787 \) | = | \(3\cdot3^{2}\cdot121^{4}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{2608976708689}{131769} a + \frac{2002720393882}{43923} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-\frac{23}{4} a - 9 : \frac{41}{4} a + \frac{105}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 3.3434998720793055347581869122691636599 \) | ||
Tamagawa product: | \( 8 \) = \(1\cdot2\cdot2^{2}\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 1.8546400351214192483311109762708569408 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-a)\) | \(3\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\((-a+1)\) | \(3\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
\((11)\) | \(121\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
1089.1-c
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.