Base field \(\Q(\sqrt{13}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 3 \); class number \(1\).
Elliptic curves in class 1089.1-c over \(\Q(\sqrt{13}) \)
Isogeny class 1089.1-c contains 4 curves linked by isogenies of degrees dividing 4.
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)