Learn more

Refine search


Results (16 matches)

  Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
108.1-a1 108.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/4\Z$ $1$ $0.802078487$ 1.112282735 \( -\frac{4395631034341}{3145728} \) \( \bigl[a\) , \( a\) , \( a\) , \( 1707 a - 4095\) , \( 53306 a - 122129\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(1707a-4095\right){x}+53306a-122129$
108.1-a2 108.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/4\Z$ $1$ $4.010392437$ 1.112282735 \( \frac{5735339}{3888} \) \( \bigl[a\) , \( a\) , \( a\) , \( -18 a + 45\) , \( -19 a + 46\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-18a+45\right){x}-19a+46$
108.1-a3 108.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $4.010392437$ 1.112282735 \( \frac{476379541}{236196} \) \( \bigl[a\) , \( a\) , \( a\) , \( 82 a - 195\) , \( -239 a + 538\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(82a-195\right){x}-239a+538$
108.1-a4 108.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z$ $1$ $4.010392437$ 1.112282735 \( -\frac{1025795879759761}{3486784401} a + \frac{5304841542920801}{6973568802} \) \( \bigl[a\) , \( a\) , \( a\) , \( 1072 a - 2535\) , \( -26573 a + 61324\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(1072a-2535\right){x}-26573a+61324$
108.1-a5 108.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.002598109$ 1.112282735 \( \frac{1025795879759761}{3486784401} a + \frac{1084416594467093}{2324522934} \) \( \bigl[a\) , \( a\) , \( a\) , \( 692 a - 1695\) , \( 13615 a - 31880\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(692a-1695\right){x}+13615a-31880$
108.1-a6 108.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z$ $1$ $0.200519621$ 1.112282735 \( -\frac{1373276865151726904870180471}{1296} a + \frac{2108232339288241560240379517}{864} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( -83860 a - 122846\) , \( 19206619 a + 24409255\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-83860a-122846\right){x}+19206619a+24409255$
108.1-a7 108.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.802078487$ 1.112282735 \( \frac{18013780041269221}{9216} \) \( \bigl[a\) , \( a\) , \( a\) , \( 27307 a - 65535\) , \( 3437626 a - 7866641\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(27307a-65535\right){x}+3437626a-7866641$
108.1-a8 108.1-a \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z$ $1$ $0.802078487$ 1.112282735 \( \frac{1373276865151726904870180471}{1296} a + \frac{3578143287561270870980777609}{2592} \) \( \bigl[a\) , \( a\) , \( a\) , \( 16267 a - 79935\) , \( 4343002 a - 6682673\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(16267a-79935\right){x}+4343002a-6682673$
108.1-b1 108.1-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/6\Z$ $1$ $16.24908073$ 1.502228045 \( -\frac{344113}{108} a - \frac{149305}{36} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -a + 1\) , \( a - 5\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a+1\right){x}+a-5$
108.1-b2 108.1-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.805453415$ 1.502228045 \( \frac{4653908}{3} a - \frac{228516739}{64} \) \( \bigl[a + 1\) , \( a - 1\) , \( a\) , \( 90 a + 117\) , \( 117 a + 152\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(90a+117\right){x}+117a+152$
108.1-b3 108.1-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.805453415$ 1.502228045 \( -\frac{312258622128767}{36} a + \frac{479374365181397}{24} \) \( \bigl[a + 1\) , \( a - 1\) , \( a\) , \( -350 a - 483\) , \( -499 a - 688\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-350a-483\right){x}-499a-688$
108.1-b4 108.1-b \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/6\Z$ $1$ $16.24908073$ 1.502228045 \( \frac{60298633043}{1458} a + \frac{13100436649}{243} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 9 a - 29\) , \( 21 a - 47\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(9a-29\right){x}+21a-47$
108.1-c1 108.1-c \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z$ $1$ $3.131974785$ 0.868653514 \( -\frac{344113}{108} a - \frac{149305}{36} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -a\) , \( 3 a - 8\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-a{x}+3a-8$
108.1-c2 108.1-c \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z$ $1$ $3.131974785$ 0.868653514 \( \frac{4653908}{3} a - \frac{228516739}{64} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 18 a + 22\) , \( -17 a - 23\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(18a+22\right){x}-17a-23$
108.1-c3 108.1-c \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z$ $1$ $3.131974785$ 0.868653514 \( -\frac{312258622128767}{36} a + \frac{479374365181397}{24} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -62 a - 98\) , \( 79 a + 73\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-62a-98\right){x}+79a+73$
108.1-c4 108.1-c \(\Q(\sqrt{13}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/2\Z$ $1$ $3.131974785$ 0.868653514 \( \frac{60298633043}{1458} a + \frac{13100436649}{243} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 9 a - 60\) , \( 41 a - 182\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(9a-60\right){x}+41a-182$
  Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.