Properties

Base field \(\Q(\sqrt{30}) \)
Label 2.2.120.1-30.1-l
Conductor 30.1
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{30}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 30 \); class number \(2\).

Elliptic curves in class 30.1-l over \(\Q(\sqrt{30}) \)

Isogeny class 30.1-l contains 8 curves linked by isogenies of degrees dividing 12.

Curve label Weierstrass Coefficients
30.1-l1 \( \bigl[a\) , \( 1\) , \( a\) , \( -45\) , \( 363\bigr] \)
30.1-l2 \( \bigl[a\) , \( 1\) , \( a\) , \( 15\) , \( 15\bigr] \)
30.1-l3 \( \bigl[a\) , \( 1\) , \( a\) , \( -1805\) , \( -1077\bigr] \)
30.1-l4 \( \bigl[a\) , \( 1\) , \( a\) , \( -265\) , \( 743\bigr] \)
30.1-l5 \( \bigl[a\) , \( 1\) , \( a\) , \( -65\) , \( -417\bigr] \)
30.1-l6 \( \bigl[a\) , \( 1\) , \( a\) , \( -1325\) , \( 14955\bigr] \)
30.1-l7 \( \bigl[a\) , \( 1\) , \( a\) , \( -1145\) , \( -18345\bigr] \)
30.1-l8 \( \bigl[a\) , \( 1\) , \( a\) , \( -21325\) , \( 1138955\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrr} 1 & 3 & 4 & 12 & 6 & 2 & 12 & 4 \\ 3 & 1 & 12 & 4 & 2 & 6 & 4 & 12 \\ 4 & 12 & 1 & 12 & 6 & 2 & 3 & 4 \\ 12 & 4 & 12 & 1 & 2 & 6 & 4 & 3 \\ 6 & 2 & 6 & 2 & 1 & 3 & 2 & 6 \\ 2 & 6 & 2 & 6 & 3 & 1 & 6 & 2 \\ 12 & 4 & 3 & 4 & 2 & 6 & 1 & 12 \\ 4 & 12 & 4 & 3 & 6 & 2 & 12 & 1 \end{array}\right)\)

Isogeny graph