Elliptic curves in class 96.1-b over \(\Q(\sqrt{3}) \)
Isogeny class 96.1-b contains
6 curves linked by isogenies of
degrees dividing 8.
Curve label |
Weierstrass Coefficients |
96.1-b1
| \( \bigl[0\) , \( 1\) , \( 0\) , \( 97256 a - 168452\) , \( 21662226 a - 37520076\bigr] \)
|
96.1-b2
| \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 9135 a - 15826\) , \( -619924 a + 1073738\bigr] \)
|
96.1-b3
| \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 570 a - 991\) , \( -9409 a + 16295\bigr] \)
|
96.1-b4
| \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2720 a - 4711\) , \( -10125 a + 17537\bigr] \)
|
96.1-b5
| \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -3 a - 12\) , \( -3 a + 16\bigr] \)
|
96.1-b6
| \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -37569 a + 65072\) , \( -632444 a + 1095425\bigr] \)
|
Rank: \( 0 \)
\(\left(\begin{array}{rrrrrr}
1 & 8 & 4 & 2 & 8 & 4 \\
8 & 1 & 2 & 4 & 4 & 8 \\
4 & 2 & 1 & 2 & 2 & 4 \\
2 & 4 & 2 & 1 & 4 & 2 \\
8 & 4 & 2 & 4 & 1 & 8 \\
4 & 8 & 4 & 2 & 8 & 1
\end{array}\right)\)