Properties

Label 2.2.12.1-726.1-l3
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 726 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(38568a-70410\right){x}+5632848a-9738972\)
sage: E = EllipticCurve([K([1,0]),K([0,1]),K([0,0]),K([-70410,38568]),K([-9738972,5632848])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,1]),Polrev([0,0]),Polrev([-70410,38568]),Polrev([-9738972,5632848])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,1],K![0,0],K![-70410,38568],K![-9738972,5632848]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((11a+33)\) = \((a+1)\cdot(a)\cdot(-2a+1)\cdot(2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 726 \) = \(2\cdot3\cdot11\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-50789376a-193729536)\) = \((a+1)^{21}\cdot(a)^{6}\cdot(-2a+1)^{6}\cdot(2a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 29792450975367168 \) = \(2^{21}\cdot3^{6}\cdot11^{6}\cdot11\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{770328618940342509379496825}{97960237056} a + \frac{1334248306529217546921740093}{97960237056} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(63 a - \frac{417}{4} : -\frac{63}{2} a + \frac{417}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.17385883476333602347461601289347165043 \)
Tamagawa product: \( 12 \)  =  \(1\cdot( 2 \cdot 3 )\cdot2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.3550955081966907058132176867437580001 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(1\) \(I_{21}\) Non-split multiplicative \(1\) \(1\) \(21\) \(21\)
\((a)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-2a+1)\) \(11\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((2a+1)\) \(11\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 726.1-l consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.