Properties

Label 2.2.12.1-676.3-a5
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 676 \)
CM yes (\(-12\))
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(24a-48\right){x}+85a-148\)
sage: E = EllipticCurve([K([1,1]),K([-1,0]),K([1,1]),K([-48,24]),K([-148,85])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,0]),Polrev([1,1]),Polrev([-48,24]),Polrev([-148,85])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,0],K![1,1],K![-48,24],K![-148,85]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((6a-28)\) = \((a+1)^{2}\cdot(a+4)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 676 \) = \(2^{2}\cdot13^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((752a+8884)\) = \((a+1)^{4}\cdot(a+4)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 77228944 \) = \(2^{4}\cdot13^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 54000 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z[\sqrt{-3}]\) (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{7}{2} a + \frac{29}{4} : \frac{41}{8} a - \frac{51}{4} : 1\right)$
Height \(1.6917494033827503625200885257146131303\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(a - 4 : a : 1\right)$ $\left(\frac{3}{2} a - 2 : -\frac{1}{4} a - \frac{7}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.6917494033827503625200885257146131303 \)
Period: \( 9.8154376718312961840931466001036802863 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 2.3967629518571205917034617104201748203 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(1\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((a+4)\) \(13\) \(4\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

For all other primes \(p\), the image is a Borel subgroup if \(p=3\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 676.3-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.