Learn more

Refine search


Results (1-50 of 76 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
3600.1-a1 3600.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.040380502$ 2.321057923 \( \frac{21296}{15} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 3\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+3{x}$
3600.1-a2 3600.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.040380502$ 2.321057923 \( \frac{470596}{225} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -12\) , \( 6 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-12{x}+6a$
3600.1-a3 3600.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.020190251$ 2.321057923 \( \frac{136835858}{1875} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -102\) , \( -210 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-102{x}-210a$
3600.1-a4 3600.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.020190251$ 2.321057923 \( \frac{546718898}{405} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -162\) , \( 486 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-162{x}+486a$
3600.1-b1 3600.1-b \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.341753900$ 2.408056929 \( \frac{21248}{45} a - \frac{35536}{45} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 39 a - 71\) , \( -273 a + 471\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(39a-71\right){x}-273a+471$
3600.1-b2 3600.1-b \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.341753900$ 2.408056929 \( -\frac{111034868}{75} a + \frac{193813784}{75} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -43 a - 87\) , \( -238 a - 391\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-43a-87\right){x}-238a-391$
3600.1-c1 3600.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.460509320$ 1.997925987 \( \frac{237276}{625} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -a + 10\) , \( -8 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a+10\right){x}-8a-1$
3600.1-c2 3600.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.84203728$ 1.997925987 \( \frac{148176}{25} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -a - 5\) , \( -5 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a-5\right){x}-5a-1$
3600.1-c3 3600.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.84203728$ 1.997925987 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -24 a - 42\) , \( 78 a + 135\bigr] \) ${y}^2={x}^{3}+\left(-24a-42\right){x}+78a+135$
3600.1-c4 3600.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.921018641$ 1.997925987 \( \frac{132304644}{5} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -a - 80\) , \( -200 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a-80\right){x}-200a-1$
3600.1-d1 3600.1-d \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.329321481$ $0.322695746$ 3.971591054 \( -\frac{147281603041}{215233605} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 1322\) , \( 19795 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-1322\right){x}+19795a-1$
3600.1-d2 3600.1-d \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.333082592$ $5.163131942$ 3.971591054 \( -\frac{1}{15} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 2\) , \( -5 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-2\right){x}-5a-1$
3600.1-d3 3600.1-d \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.664660740$ $0.645391492$ 3.971591054 \( \frac{4733169839}{3515625} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a + 418\) , \( 1087 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a+418\right){x}+1087a-1$
3600.1-d4 3600.1-d \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.332330370$ $2.581565971$ 3.971591054 \( \frac{111284641}{50625} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 122\) , \( 115 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-122\right){x}+115a-1$
3600.1-d5 3600.1-d \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.666165185$ $5.163131942$ 3.971591054 \( \frac{13997521}{225} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 62\) , \( -113 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-62\right){x}-113a-1$
3600.1-d6 3600.1-d \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.664660740$ $1.290782985$ 3.971591054 \( \frac{272223782641}{164025} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 1622\) , \( 14215 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-1622\right){x}+14215a-1$
3600.1-d7 3600.1-d \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.332330370$ $2.581565971$ 3.971591054 \( \frac{56667352321}{15} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 962\) , \( -6773 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-962\right){x}-6773a-1$
3600.1-d8 3600.1-d \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.329321481$ $0.645391492$ 3.971591054 \( \frac{1114544804970241}{405} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 25922\) , \( 923035 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-25922\right){x}+923035a-1$
3600.1-e1 3600.1-e \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.341753900$ 2.408056929 \( -\frac{21248}{45} a - \frac{35536}{45} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -349 a + 601\) , \( 36040 a - 62425\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-349a+601\right){x}+36040a-62425$
3600.1-e2 3600.1-e \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.341753900$ 2.408056929 \( \frac{111034868}{75} a + \frac{193813784}{75} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 43 a - 87\) , \( 238 a - 391\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(43a-87\right){x}+238a-391$
3600.1-f1 3600.1-f \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.040380502$ 2.321057923 \( \frac{21296}{15} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 3\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+3{x}$
3600.1-f2 3600.1-f \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.040380502$ 2.321057923 \( \frac{470596}{225} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -12\) , \( -6 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}-12{x}-6a$
3600.1-f3 3600.1-f \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.020190251$ 2.321057923 \( \frac{136835858}{1875} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -102\) , \( 210 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}-102{x}+210a$
3600.1-f4 3600.1-f \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.020190251$ 2.321057923 \( \frac{546718898}{405} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -162\) , \( -486 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}-162{x}-486a$
3600.1-g1 3600.1-g \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.140709443$ $0.747258760$ 3.694265501 \( -\frac{273359449}{1536000} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -162\) , \( 1530 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-162{x}+1530a$
3600.1-g2 3600.1-g \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.713569814$ $2.241776282$ 3.694265501 \( \frac{357911}{2160} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 18\) , \( -54 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+18{x}-54a$
3600.1-g3 3600.1-g \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.562837774$ $0.373629380$ 3.694265501 \( \frac{10316097499609}{5859375000} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -5442\) , \( 13050 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-5442{x}+13050a$
3600.1-g4 3600.1-g \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.854279258$ $1.120888141$ 3.694265501 \( \frac{35578826569}{5314410} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -822\) , \( 4650 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-822{x}+4650a$
3600.1-g5 3600.1-g \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.427139629$ $2.241776282$ 3.694265501 \( \frac{702595369}{72900} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -222\) , \( -630 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-222{x}-630a$
3600.1-g6 3600.1-g \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $4.281418887$ $0.747258760$ 3.694265501 \( \frac{4102915888729}{9000000} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -4002\) , \( 56826 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-4002{x}+56826a$
3600.1-g7 3600.1-g \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.854279258$ $1.120888141$ 3.694265501 \( \frac{2656166199049}{33750} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -3462\) , \( -44694 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-3462{x}-44694a$
3600.1-g8 3600.1-g \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.562837774$ $0.373629380$ 3.694265501 \( \frac{16778985534208729}{81000} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -64002\) , \( 3608826 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-64002{x}+3608826a$
3600.1-h1 3600.1-h \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.323337634$ 1.536715208 \( \frac{21248}{45} a - \frac{35536}{45} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 39 a - 71\) , \( 272 a - 473\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(39a-71\right){x}+272a-473$
3600.1-h2 3600.1-h \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.323337634$ 1.536715208 \( -\frac{111034868}{75} a + \frac{193813784}{75} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -43 a - 87\) , \( 238 a + 391\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-43a-87\right){x}+238a+391$
3600.1-i1 3600.1-i \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.586421166$ $2.472250671$ 3.691740124 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 1526 a - 2643\) , \( 65251 a - 113018\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1526a-2643\right){x}+65251a-113018$
3600.1-i2 3600.1-i \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.862140388$ $7.416752013$ 3.691740124 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -154 a + 267\) , \( -1433 a + 2482\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-154a+267\right){x}-1433a+2482$
3600.1-i3 3600.1-i \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.431070194$ $14.83350402$ 3.691740124 \( \frac{16384}{5} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 16 a - 27\) , \( -41 a + 71\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(16a-27\right){x}-41a+71$
3600.1-i4 3600.1-i \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.293210583$ $4.944501342$ 3.691740124 \( \frac{488095744}{125} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 496 a - 867\) , \( 7687 a - 13309\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(496a-867\right){x}+7687a-13309$
3600.1-j1 3600.1-j \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.329321481$ $0.322695746$ 3.971591054 \( -\frac{147281603041}{215233605} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 1322\) , \( -19796 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-1322\right){x}-19796a-1$
3600.1-j2 3600.1-j \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.333082592$ $5.163131942$ 3.971591054 \( -\frac{1}{15} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 2\) , \( 4 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-2\right){x}+4a-1$
3600.1-j3 3600.1-j \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.664660740$ $0.645391492$ 3.971591054 \( \frac{4733169839}{3515625} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a + 418\) , \( -1088 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a+418\right){x}-1088a-1$
3600.1-j4 3600.1-j \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.332330370$ $2.581565971$ 3.971591054 \( \frac{111284641}{50625} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 122\) , \( -116 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-122\right){x}-116a-1$
3600.1-j5 3600.1-j \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.666165185$ $5.163131942$ 3.971591054 \( \frac{13997521}{225} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 62\) , \( 112 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-62\right){x}+112a-1$
3600.1-j6 3600.1-j \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.664660740$ $1.290782985$ 3.971591054 \( \frac{272223782641}{164025} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 1622\) , \( -14216 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-1622\right){x}-14216a-1$
3600.1-j7 3600.1-j \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.332330370$ $2.581565971$ 3.971591054 \( \frac{56667352321}{15} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 962\) , \( 6772 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-962\right){x}+6772a-1$
3600.1-j8 3600.1-j \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.329321481$ $0.645391492$ 3.971591054 \( \frac{1114544804970241}{405} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 25922\) , \( -923036 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-25922\right){x}-923036a-1$
3600.1-k1 3600.1-k \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.460509320$ 1.997925987 \( \frac{237276}{625} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 12\) , \( 18 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+12{x}+18a$
3600.1-k2 3600.1-k \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.84203728$ 1.997925987 \( \frac{148176}{25} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -3\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}-3{x}$
3600.1-k3 3600.1-k \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.84203728$ 1.997925987 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -24 a - 42\) , \( -78 a - 135\bigr] \) ${y}^2={x}^{3}+\left(-24a-42\right){x}-78a-135$
3600.1-k4 3600.1-k \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.921018641$ 1.997925987 \( \frac{132304644}{5} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -78\) , \( 120 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}-78{x}+120a$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.