Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
3600.1-a1 |
3600.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$8.040380502$ |
2.321057923 |
\( \frac{21296}{15} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 3\) , \( 0\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+3{x}$ |
3600.1-a2 |
3600.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$8.040380502$ |
2.321057923 |
\( \frac{470596}{225} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -12\) , \( 6 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-12{x}+6a$ |
3600.1-a3 |
3600.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{8} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$4.020190251$ |
2.321057923 |
\( \frac{136835858}{1875} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -102\) , \( -210 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-102{x}-210a$ |
3600.1-a4 |
3600.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{14} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$4.020190251$ |
2.321057923 |
\( \frac{546718898}{405} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -162\) , \( 486 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-162{x}+486a$ |
3600.1-b1 |
3600.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$8.341753900$ |
2.408056929 |
\( \frac{21248}{45} a - \frac{35536}{45} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 39 a - 71\) , \( -273 a + 471\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(39a-71\right){x}-273a+471$ |
3600.1-b2 |
3600.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$8.341753900$ |
2.408056929 |
\( -\frac{111034868}{75} a + \frac{193813784}{75} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -43 a - 87\) , \( -238 a - 391\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-43a-87\right){x}-238a-391$ |
3600.1-c1 |
3600.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{8} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.460509320$ |
1.997925987 |
\( \frac{237276}{625} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -a + 10\) , \( -8 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a+10\right){x}-8a-1$ |
3600.1-c2 |
3600.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$13.84203728$ |
1.997925987 |
\( \frac{148176}{25} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -a - 5\) , \( -5 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a-5\right){x}-5a-1$ |
3600.1-c3 |
3600.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$13.84203728$ |
1.997925987 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -24 a - 42\) , \( 78 a + 135\bigr] \) |
${y}^2={x}^{3}+\left(-24a-42\right){x}+78a+135$ |
3600.1-c4 |
3600.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$6.921018641$ |
1.997925987 |
\( \frac{132304644}{5} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -a - 80\) , \( -200 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a-80\right){x}-200a-1$ |
3600.1-d1 |
3600.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{38} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$5.329321481$ |
$0.322695746$ |
3.971591054 |
\( -\frac{147281603041}{215233605} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 1322\) , \( 19795 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-1322\right){x}+19795a-1$ |
3600.1-d2 |
3600.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.333082592$ |
$5.163131942$ |
3.971591054 |
\( -\frac{1}{15} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 2\) , \( -5 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-2\right){x}-5a-1$ |
3600.1-d3 |
3600.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{10} \cdot 5^{16} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$2.664660740$ |
$0.645391492$ |
3.971591054 |
\( \frac{4733169839}{3515625} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a + 418\) , \( 1087 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a+418\right){x}+1087a-1$ |
3600.1-d4 |
3600.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{14} \cdot 5^{8} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1.332330370$ |
$2.581565971$ |
3.971591054 |
\( \frac{111284641}{50625} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 122\) , \( 115 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-122\right){x}+115a-1$ |
3600.1-d5 |
3600.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{10} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.666165185$ |
$5.163131942$ |
3.971591054 |
\( \frac{13997521}{225} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 62\) , \( -113 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-62\right){x}-113a-1$ |
3600.1-d6 |
3600.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{22} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$2.664660740$ |
$1.290782985$ |
3.971591054 |
\( \frac{272223782641}{164025} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 1622\) , \( 14215 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-1622\right){x}+14215a-1$ |
3600.1-d7 |
3600.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.332330370$ |
$2.581565971$ |
3.971591054 |
\( \frac{56667352321}{15} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 962\) , \( -6773 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-962\right){x}-6773a-1$ |
3600.1-d8 |
3600.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{14} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$5.329321481$ |
$0.645391492$ |
3.971591054 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -a - 25922\) , \( 923035 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-a-25922\right){x}+923035a-1$ |
3600.1-e1 |
3600.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$8.341753900$ |
2.408056929 |
\( -\frac{21248}{45} a - \frac{35536}{45} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -349 a + 601\) , \( 36040 a - 62425\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-349a+601\right){x}+36040a-62425$ |
3600.1-e2 |
3600.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$8.341753900$ |
2.408056929 |
\( \frac{111034868}{75} a + \frac{193813784}{75} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 43 a - 87\) , \( 238 a - 391\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(43a-87\right){x}+238a-391$ |
3600.1-f1 |
3600.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$8.040380502$ |
2.321057923 |
\( \frac{21296}{15} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 3\) , \( 0\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+3{x}$ |
3600.1-f2 |
3600.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$8.040380502$ |
2.321057923 |
\( \frac{470596}{225} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -12\) , \( -6 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}-12{x}-6a$ |
3600.1-f3 |
3600.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{8} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$4.020190251$ |
2.321057923 |
\( \frac{136835858}{1875} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -102\) , \( 210 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}-102{x}+210a$ |
3600.1-f4 |
3600.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{14} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$4.020190251$ |
2.321057923 |
\( \frac{546718898}{405} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -162\) , \( -486 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}-162{x}-486a$ |
3600.1-g1 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{36} \cdot 3^{8} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$2.140709443$ |
$0.747258760$ |
3.694265501 |
\( -\frac{273359449}{1536000} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -162\) , \( 1530 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-162{x}+1530a$ |
3600.1-g2 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{20} \cdot 3^{12} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$0.713569814$ |
$2.241776282$ |
3.694265501 |
\( \frac{357911}{2160} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 18\) , \( -54 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+18{x}-54a$ |
3600.1-g3 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{8} \cdot 5^{24} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$8.562837774$ |
$0.373629380$ |
3.694265501 |
\( \frac{10316097499609}{5859375000} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -5442\) , \( 13050 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-5442{x}+13050a$ |
3600.1-g4 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{14} \cdot 3^{30} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$2.854279258$ |
$1.120888141$ |
3.694265501 |
\( \frac{35578826569}{5314410} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -822\) , \( 4650 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-822{x}+4650a$ |
3600.1-g5 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{16} \cdot 3^{18} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$1.427139629$ |
$2.241776282$ |
3.694265501 |
\( \frac{702595369}{72900} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -222\) , \( -630 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-222{x}-630a$ |
3600.1-g6 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{10} \cdot 5^{12} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{5} \) |
$4.281418887$ |
$0.747258760$ |
3.694265501 |
\( \frac{4102915888729}{9000000} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -4002\) , \( 56826 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-4002{x}+56826a$ |
3600.1-g7 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{14} \cdot 3^{12} \cdot 5^{8} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$2.854279258$ |
$1.120888141$ |
3.694265501 |
\( \frac{2656166199049}{33750} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -3462\) , \( -44694 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-3462{x}-44694a$ |
3600.1-g8 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{14} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$8.562837774$ |
$0.373629380$ |
3.694265501 |
\( \frac{16778985534208729}{81000} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -64002\) , \( 3608826 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-64002{x}+3608826a$ |
3600.1-h1 |
3600.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$5.323337634$ |
1.536715208 |
\( \frac{21248}{45} a - \frac{35536}{45} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 39 a - 71\) , \( 272 a - 473\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(39a-71\right){x}+272a-473$ |
3600.1-h2 |
3600.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$5.323337634$ |
1.536715208 |
\( -\frac{111034868}{75} a + \frac{193813784}{75} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -43 a - 87\) , \( 238 a + 391\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-43a-87\right){x}+238a+391$ |
3600.1-i1 |
3600.1-i |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{12} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$2.586421166$ |
$2.472250671$ |
3.691740124 |
\( -\frac{20720464}{15625} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 1526 a - 2643\) , \( 65251 a - 113018\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1526a-2643\right){x}+65251a-113018$ |
3600.1-i2 |
3600.1-i |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$0.862140388$ |
$7.416752013$ |
3.691740124 |
\( \frac{21296}{25} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -154 a + 267\) , \( -1433 a + 2482\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-154a+267\right){x}-1433a+2482$ |
3600.1-i3 |
3600.1-i |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$0.431070194$ |
$14.83350402$ |
3.691740124 |
\( \frac{16384}{5} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( 16 a - 27\) , \( -41 a + 71\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(16a-27\right){x}-41a+71$ |
3600.1-i4 |
3600.1-i |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$1.293210583$ |
$4.944501342$ |
3.691740124 |
\( \frac{488095744}{125} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( 496 a - 867\) , \( 7687 a - 13309\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(496a-867\right){x}+7687a-13309$ |
3600.1-j1 |
3600.1-j |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{38} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$5.329321481$ |
$0.322695746$ |
3.971591054 |
\( -\frac{147281603041}{215233605} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 1322\) , \( -19796 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-1322\right){x}-19796a-1$ |
3600.1-j2 |
3600.1-j |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.333082592$ |
$5.163131942$ |
3.971591054 |
\( -\frac{1}{15} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 2\) , \( 4 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-2\right){x}+4a-1$ |
3600.1-j3 |
3600.1-j |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{10} \cdot 5^{16} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$2.664660740$ |
$0.645391492$ |
3.971591054 |
\( \frac{4733169839}{3515625} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a + 418\) , \( -1088 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a+418\right){x}-1088a-1$ |
3600.1-j4 |
3600.1-j |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{14} \cdot 5^{8} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1.332330370$ |
$2.581565971$ |
3.971591054 |
\( \frac{111284641}{50625} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 122\) , \( -116 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-122\right){x}-116a-1$ |
3600.1-j5 |
3600.1-j |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{10} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.666165185$ |
$5.163131942$ |
3.971591054 |
\( \frac{13997521}{225} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 62\) , \( 112 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-62\right){x}+112a-1$ |
3600.1-j6 |
3600.1-j |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{22} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$2.664660740$ |
$1.290782985$ |
3.971591054 |
\( \frac{272223782641}{164025} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 1622\) , \( -14216 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-1622\right){x}-14216a-1$ |
3600.1-j7 |
3600.1-j |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.332330370$ |
$2.581565971$ |
3.971591054 |
\( \frac{56667352321}{15} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 962\) , \( 6772 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-962\right){x}+6772a-1$ |
3600.1-j8 |
3600.1-j |
$8$ |
$16$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{14} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$5.329321481$ |
$0.645391492$ |
3.971591054 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 25922\) , \( -923036 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-25922\right){x}-923036a-1$ |
3600.1-k1 |
3600.1-k |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{8} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.460509320$ |
1.997925987 |
\( \frac{237276}{625} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 12\) , \( 18 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+12{x}+18a$ |
3600.1-k2 |
3600.1-k |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$13.84203728$ |
1.997925987 |
\( \frac{148176}{25} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -3\) , \( 0\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}-3{x}$ |
3600.1-k3 |
3600.1-k |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$13.84203728$ |
1.997925987 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -24 a - 42\) , \( -78 a - 135\bigr] \) |
${y}^2={x}^{3}+\left(-24a-42\right){x}-78a-135$ |
3600.1-k4 |
3600.1-k |
$4$ |
$4$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (a), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$6.921018641$ |
1.997925987 |
\( \frac{132304644}{5} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -78\) , \( 120 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}-78{x}+120a$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.