Properties

Label 2.2.12.1-33.2-b2
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 33 \)
CM no
Base change no
Q-curve no
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(25a-29\right){x}-89a+138\)
sage: E = EllipticCurve([K([1,0]),K([0,1]),K([0,0]),K([-29,25]),K([138,-89])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,1]),Polrev([0,0]),Polrev([-29,25]),Polrev([138,-89])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,1],K![0,0],K![-29,25],K![138,-89]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{8}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-3 a + 7 : 12 a - 17 : 1\right)$$0$$8$

Invariants

Conductor: $\frak{N}$ = \((a-6)\) = \((a)\cdot(-2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 33 \) = \(3\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $869535a-1916946$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((869535a-1916946)\) = \((a)^{8}\cdot(-2a+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 1406408618241 \) = \(3^{8}\cdot11^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{66041766161825}{17363069361} a - \frac{104139369666842}{17363069361} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 3.8640640545192230667498627428722255041 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 64 \)  =  \(2^{3}\cdot2^{3}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(8\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.1154592110213151018547835190845673096 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.115459211 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 3.864064 \cdot 1 \cdot 64 } { {8^2 \cdot 3.464102} } \approx 1.115459211$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((-2a+1)\) \(11\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 33.2-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.