Properties

Label 2.2.12.1-3072.1-bb2
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 3072 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(14a-22\right){x}+32a-56\)
sage: E = EllipticCurve([K([0,0]),K([-1,-1]),K([0,0]),K([-22,14]),K([-56,32])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,-1]),Polrev([0,0]),Polrev([-22,14]),Polrev([-56,32])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,-1],K![0,0],K![-22,14],K![-56,32]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((32a)\) = \((a+1)^{10}\cdot(a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3072 \) = \(2^{10}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((768)\) = \((a+1)^{16}\cdot(a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 589824 \) = \(2^{16}\cdot3^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{16000}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{3}{2} a - 2 : -\frac{5}{4} a + \frac{9}{4} : 1\right)$
Height \(0.84837199365724798058734699492601845650\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-2 a + 4 : 0 : 1\right)$ $\left(a - 1 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.84837199365724798058734699492601845650 \)
Period: \( 12.810185847448570274400175677713347198 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 3.1372644667895037301823038126283078963 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(4\) \(I_{2}^{*}\) Additive \(-1\) \(10\) \(16\) \(0\)
\((a)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 3072.1-bb consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 384.c1
\(\Q\) 1152.i1