Properties

Label 2.2.12.1-3072.1-ba3
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 3072 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(1224a-2120\right){x}+29528a-51144\)
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([0,0]),K([-2120,1224]),K([-51144,29528])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([0,0]),Polrev([-2120,1224]),Polrev([-51144,29528])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,1],K![0,0],K![-2120,1224],K![-51144,29528]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((32a)\) = \((a+1)^{10}\cdot(a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3072 \) = \(2^{10}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((36864)\) = \((a+1)^{24}\cdot(a)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1358954496 \) = \(2^{24}\cdot3^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1122088}{9} a + \frac{1989808}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{31}{3} a - \frac{53}{3} : -\frac{22}{9} a + 4 : 1\right)$
Height \(1.8699872378927468140711698136545388189\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(10 a - 18 : 0 : 1\right)$ $\left(-22 a + 38 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.8699872378927468140711698136545388189 \)
Period: \( 6.1503287164524559235370152532714054113 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 3.3200631755007039335032232920015800537 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(4\) \(I_{10}^{*}\) Additive \(-1\) \(10\) \(24\) \(0\)
\((a)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 3072.1-ba consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.