Learn more

Refine search


Results (1-50 of 264 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
3072.1-a1 3072.1-a \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $3.551466094$ 3.075659858 \( -\frac{217996}{729} a + \frac{1023628}{729} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 504 a - 872\) , \( -2120 a + 3672\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(504a-872\right){x}-2120a+3672$
3072.1-a2 3072.1-a \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $7.102932189$ 3.075659858 \( -\frac{770336}{27} a + \frac{1419904}{27} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 284 a - 492\) , \( 3672 a - 6360\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(284a-492\right){x}+3672a-6360$
3072.1-a3 3072.1-a \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $1.775733047$ 3.075659858 \( -\frac{26639622068}{9} a + \frac{15380474156}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 4544 a - 7872\) , \( 223656 a - 387384\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(4544a-7872\right){x}+223656a-387384$
3072.1-a4 3072.1-a \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $14.20586437$ 3.075659858 \( \frac{14225792}{9} a + \frac{8213248}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 4 a - 7\) , \( 134 a - 232\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(4a-7\right){x}+134a-232$
3072.1-b1 3072.1-b \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $2.120342961$ $2.383075350$ 2.917314563 \( -\frac{443186854}{81} a + \frac{767608522}{81} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -48 a - 112\) , \( 1016 a + 1720\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-48a-112\right){x}+1016a+1720$
3072.1-b2 3072.1-b \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $1.060171480$ $9.532301402$ 2.917314563 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 107702 a - 186545\) , \( -25356654 a + 43919013\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(107702a-186545\right){x}-25356654a+43919013$
3072.1-b3 3072.1-b \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.530085740$ $19.06460280$ 2.917314563 \( -\frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 6862 a - 11885\) , \( -381770 a + 661245\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(6862a-11885\right){x}-381770a+661245$
3072.1-b4 3072.1-b \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $1.060171480$ $9.532301402$ 2.917314563 \( \frac{166016}{3} a + 95936 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -23148 a + 40096\) , \( -10988976 a + 19033464\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-23148a+40096\right){x}-10988976a+19033464$
3072.1-b5 3072.1-b \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.060171480$ $9.532301402$ 2.917314563 \( \frac{1122088}{9} a + \frac{1989808}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 116 a - 200\) , \( 756 a - 1308\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(116a-200\right){x}+756a-1308$
3072.1-b6 3072.1-b \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/4\Z$ $2.120342961$ $4.766150701$ 2.917314563 \( \frac{164847992914}{3} a + \frac{285525100658}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -244 a + 400\) , \( 4260 a - 7308\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-244a+400\right){x}+4260a-7308$
3072.1-c1 3072.1-c \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $2.252849762$ 2.601366833 \( -\frac{740855896}{3} a + \frac{1283201128}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 96 a - 160\) , \( 632 a - 1096\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(96a-160\right){x}+632a-1096$
3072.1-c2 3072.1-c \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $9.011399049$ 2.601366833 \( -\frac{61952}{9} a + \frac{162688}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 6 a - 10\) , \( 8 a - 16\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(6a-10\right){x}+8a-16$
3072.1-c3 3072.1-c \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $4.505699524$ 2.601366833 \( \frac{247496}{81} a + \frac{429112}{81} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -4 a\) , \( 36 a - 60\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-4a{x}+36a-60$
3072.1-c4 3072.1-c \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $9.011399049$ 2.601366833 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -32 a - 56\) , \( -142 a - 246\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-32a-56\right){x}-142a-246$
3072.1-d1 3072.1-d \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $0.603762616$ $6.405092923$ 4.465406728 \( \frac{4000}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -6 a + 13\) , \( 23 a - 39\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a+13\right){x}+23a-39$
3072.1-d2 3072.1-d \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.207525233$ $12.81018584$ 4.465406728 \( \frac{16000}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -3\) , \( -3\bigr] \) ${y}^2={x}^{3}+{x}^{2}-3{x}-3$
3072.1-d3 3072.1-d \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $2.415050467$ $6.405092923$ 4.465406728 \( -\frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 10 a - 33\) , \( 50 a - 69\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(10a-33\right){x}+50a-69$
3072.1-d4 3072.1-d \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $2.415050467$ $6.405092923$ 4.465406728 \( \frac{17879000}{3} a + 10335000 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -10 a - 33\) , \( -50 a - 69\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-10a-33\right){x}-50a-69$
3072.1-e1 3072.1-e \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $1.285289264$ 2.968248410 \( -\frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 430252 a - 745216\) , \( 202069724 a - 349995028\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(430252a-745216\right){x}+202069724a-349995028$
3072.1-e2 3072.1-e \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $1.285289264$ 2.968248410 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -32 a + 64\) , \( -1080 a + 1800\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-32a+64\right){x}-1080a+1800$
3072.1-e3 3072.1-e \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $10.28231411$ 2.968248410 \( \frac{2048}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -54060 a + 93635\) , \( 11124426 a - 19268071\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-54060a+93635\right){x}+11124426a-19268071$
3072.1-e4 3072.1-e \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $10.28231411$ 2.968248410 \( \frac{35152}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 1812 a - 3136\) , \( 40796 a - 70660\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(1812a-3136\right){x}+40796a-70660$
3072.1-e5 3072.1-e \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $5.141157056$ 2.968248410 \( \frac{1556068}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 48 a - 96\) , \( -216 a + 360\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(48a-96\right){x}-216a+360$
3072.1-e6 3072.1-e \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $5.141157056$ 2.968248410 \( \frac{28756228}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 26892 a - 46576\) , \( 3152252 a - 5459860\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(26892a-46576\right){x}+3152252a-5459860$
3072.1-e7 3072.1-e \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $2.570578528$ 2.968248410 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 768 a - 1536\) , \( -16632 a + 27720\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(768a-1536\right){x}-16632a+27720$
3072.1-e8 3072.1-e \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $2.570578528$ 2.968248410 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 24812 a - 42976\) , \( 3661724 a - 6342292\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(24812a-42976\right){x}+3661724a-6342292$
3072.1-f1 3072.1-f \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $3.719487697$ $1.285289264$ 2.760090861 \( -\frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 30890 a - 53505\) , \( 3879118 a - 6718827\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(30890a-53505\right){x}+3879118a-6718827$
3072.1-f2 3072.1-f \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $3.719487697$ $1.285289264$ 2.760090861 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 32 a + 64\) , \( -1080 a - 1800\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(32a+64\right){x}-1080a-1800$
3072.1-f3 3072.1-f \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $0.464935962$ $10.28231411$ 2.760090861 \( \frac{2048}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -3882 a + 6724\) , \( 217892 a - 377400\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-3882a+6724\right){x}+217892a-377400$
3072.1-f4 3072.1-f \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.929871924$ $10.28231411$ 2.760090861 \( \frac{35152}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 130 a - 225\) , \( 750 a - 1299\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(130a-225\right){x}+750a-1299$
3072.1-f5 3072.1-f \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.859743848$ $5.141157056$ 2.760090861 \( \frac{1556068}{81} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -48 a - 96\) , \( -216 a - 360\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-48a-96\right){x}-216a-360$
3072.1-f6 3072.1-f \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.859743848$ $5.141157056$ 2.760090861 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1930 a - 3345\) , \( 60126 a - 104139\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(1930a-3345\right){x}+60126a-104139$
3072.1-f7 3072.1-f \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $0.929871924$ $2.570578528$ 2.760090861 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -768 a - 1536\) , \( -16632 a - 27720\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-768a-1536\right){x}-16632a-27720$
3072.1-f8 3072.1-f \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $1$ $\Z/2\Z$ $3.719487697$ $2.570578528$ 2.760090861 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1770 a - 3105\) , \( 69998 a - 121131\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(1770a-3105\right){x}+69998a-121131$
3072.1-g1 3072.1-g \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $14.20586437$ 1.025219952 \( -\frac{14225792}{9} a + \frac{8213248}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -1\) , \( -4 a - 2\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}-{x}-4a-2$
3072.1-g2 3072.1-g \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $3.551466094$ 1.025219952 \( \frac{217996}{729} a + \frac{1023628}{729} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -40 a - 56\) , \( 40 a + 72\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-40a-56\right){x}+40a+72$
3072.1-g3 3072.1-g \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $7.102932189$ 1.025219952 \( \frac{770336}{27} a + \frac{1419904}{27} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -20 a - 36\) , \( -72 a - 120\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-20a-36\right){x}-72a-120$
3072.1-g4 3072.1-g \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $1.775733047$ 1.025219952 \( \frac{26639622068}{9} a + \frac{15380474156}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -320 a - 576\) , \( -4296 a - 7464\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-320a-576\right){x}-4296a-7464$
3072.1-h1 3072.1-h \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $2.252849762$ 1.300683416 \( -\frac{740855896}{3} a + \frac{1283201128}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 1312 a - 2272\) , \( 32872 a - 56936\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(1312a-2272\right){x}+32872a-56936$
3072.1-h2 3072.1-h \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $9.011399049$ 1.300683416 \( -\frac{61952}{9} a + \frac{162688}{9} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 82 a - 142\) , \( 448 a - 776\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(82a-142\right){x}+448a-776$
3072.1-h3 3072.1-h \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $4.505699524$ 1.300683416 \( \frac{247496}{81} a + \frac{429112}{81} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -28 a + 48\) , \( 1836 a - 3180\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-28a+48\right){x}+1836a-3180$
3072.1-h4 3072.1-h \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $9.011399049$ 1.300683416 \( \frac{24993664}{3} a + \frac{43299296}{3} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 2 a - 9\) , \( -3 a + 3\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(2a-9\right){x}-3a+3$
3072.1-i1 3072.1-i \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $2.383075350$ 2.751738390 \( -\frac{443186854}{81} a + \frac{767608522}{81} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 122 a - 225\) , \( 1074 a - 1797\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(122a-225\right){x}+1074a-1797$
3072.1-i2 3072.1-i \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $9.532301402$ 2.751738390 \( -\frac{132636728}{3} a + 76579552 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 1500096 a - 2598240\) , \( -1316558104 a + 2280345528\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(1500096a-2598240\right){x}-1316558104a+2280345528$
3072.1-i3 3072.1-i \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $19.06460280$ 2.751738390 \( -\frac{9856}{3} a + \frac{22336}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 95576 a - 165540\) , \( -19749120 a + 34206480\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(95576a-165540\right){x}-19749120a+34206480$
3072.1-i4 3072.1-i \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $9.532301402$ 2.751738390 \( \frac{166016}{3} a + 95936 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -322420 a + 558448\) , \( -571215336 a + 989373984\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-322420a+558448\right){x}-571215336a+989373984$
3072.1-i5 3072.1-i \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $9.532301402$ 2.751738390 \( \frac{1122088}{9} a + \frac{1989808}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 1612 a - 2792\) , \( 39276 a - 68028\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(1612a-2792\right){x}+39276a-68028$
3072.1-i6 3072.1-i \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $4.766150701$ 2.751738390 \( \frac{164847992914}{3} a + \frac{285525100658}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -3308 a + 5728\) , \( 220380 a - 381708\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3308a+5728\right){x}+220380a-381708$
3072.1-j1 3072.1-j \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $3.551466094$ 1.025219952 \( -\frac{217996}{729} a + \frac{1023628}{729} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 40 a - 56\) , \( -40 a + 72\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(40a-56\right){x}-40a+72$
3072.1-j2 3072.1-j \(\Q(\sqrt{3}) \) \( 2^{10} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $7.102932189$ 1.025219952 \( -\frac{770336}{27} a + \frac{1419904}{27} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 20 a - 36\) , \( 72 a - 120\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(20a-36\right){x}+72a-120$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.