Properties

Base field \(\Q(\sqrt{3}) \)
Label 2.2.12.1-294.1-a
Conductor 294.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

Elliptic curves in class 294.1-a over \(\Q(\sqrt{3}) \)

Isogeny class 294.1-a contains 6 curves linked by isogenies of degrees dividing 8.

Curve label Weierstrass Coefficients
294.1-a1 \( \bigl[a\) , \( 1\) , \( 0\) , \( -3\) , \( -9\bigr] \)
294.1-a2 \( \bigl[a\) , \( 1\) , \( 0\) , \( 387\) , \( -891\bigr] \)
294.1-a3 \( \bigl[a\) , \( 1\) , \( 0\) , \( -103\) , \( -205\bigr] \)
294.1-a4 \( \bigl[a\) , \( 1\) , \( 0\) , \( -913\) , \( 10001\bigr] \)
294.1-a5 \( \bigl[a\) , \( 1\) , \( 0\) , \( -83\) , \( -345\bigr] \)
294.1-a6 \( \bigl[a\) , \( 1\) , \( 0\) , \( -1343\) , \( -19749\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 8 & 2 & 4 \\ 8 & 1 & 2 & 4 & 4 & 8 \\ 4 & 2 & 1 & 2 & 2 & 4 \\ 8 & 4 & 2 & 1 & 4 & 8 \\ 2 & 4 & 2 & 4 & 1 & 2 \\ 4 & 8 & 4 & 8 & 2 & 1 \end{array}\right)\)

Isogeny graph