Base field \(\Q(\sqrt{3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
gp: K = nfinit(Polrev([-3, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,1]),K([-1,-1]),K([1,1]),K([-140,77]),K([2879,-1664])])
gp: E = ellinit([Polrev([1,1]),Polrev([-1,-1]),Polrev([1,1]),Polrev([-140,77]),Polrev([2879,-1664])], K);
magma: E := EllipticCurve([K![1,1],K![-1,-1],K![1,1],K![-140,77],K![2879,-1664]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((12a+12)\) | = | \((a+1)^{5}\cdot(a)^{2}\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 288 \) | = | \(2^{5}\cdot3^{2}\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((34992a+34992)\) | = | \((a+1)^{9}\cdot(a)^{14}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( -2448880128 \) | = | \(-2^{9}\cdot3^{14}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{443186854}{81} a + \frac{767608522}{81} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(-a + 1 : 20 a - 35 : 1\right)$ |
Height | \(0.82039175795607957942307040713717457157\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(\frac{13}{2} a - 12 : \frac{9}{4} a - \frac{17}{4} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.82039175795607957942307040713717457157 \) | ||
Period: | \( 3.8915457516148205435271553948831918230 \) | ||
Tamagawa product: | \( 4 \) = \(1\cdot2^{2}\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 1.8432438854463788518587732691060948943 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((a+1)\) | \(2\) | \(1\) | \(I_0^{*}\) | Additive | \(1\) | \(5\) | \(9\) | \(0\) |
\((a)\) | \(3\) | \(4\) | \(I_{8}^{*}\) | Additive | \(-1\) | \(2\) | \(14\) | \(8\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
288.1-c
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.