Properties

Label 2.2.12.1-1875.1-d8
Base field \(\Q(\sqrt{3}) \)
Conductor \((25a)\)
Conductor norm \( 1875 \)
CM no
Base change yes: 75.b1,3600.u1
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([-3, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-54001{x}-4834477\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([1,0]),K([-54001,0]),K([-4834477,0])])
 
gp: E = ellinit([Pol(Vecrev([1,0])),Pol(Vecrev([0,0])),Pol(Vecrev([1,0])),Pol(Vecrev([-54001,0])),Pol(Vecrev([-4834477,0]))], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![1,0],K![-54001,0],K![-4834477,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((25a)\) = \((a)\cdot(5)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1875 \) = \(3\cdot25^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((6328125)\) = \((a)^{8}\cdot(5)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 40045166015625 \) = \(3^{8}\cdot25^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1114544804970241}{405} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{73307}{6} : \frac{28064575}{36} a - \frac{73313}{12} : 1\right)$
Height \(9.60390141844082\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{537}{4} : \frac{533}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 9.60390141844082 \)
Period: \( 0.0980844441095670 \)
Tamagawa product: \( 32 \)  =  \(2^{3}\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 4.35088083002849 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((5)\) \(25\) \(4\) \(I_1^{*}\) Additive \(1\) \(2\) \(7\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 1875.1-d consists of curves linked by isogenies of degrees dividing 16.

Base change

This curve is the base change of 75.b1, 3600.u1, defined over \(\Q\), so it is also a \(\Q\)-curve.