# Properties

 Label 2.2.12.1-1875.1-b2 Base field $$\Q(\sqrt{3})$$ Conductor $$(25a)$$ Conductor norm $$1875$$ CM no Base change yes: 1200.c2,225.e2 Q-curve yes Torsion order $$1$$ Rank $$0$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Base field$$\Q(\sqrt{3})$$

Generator $$a$$, with minimal polynomial $$x^{2} - 3$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))

gp: K = nfinit(Pol(Vecrev([-3, 0, 1])));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);

## Weierstrass equation

$${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-94a+163\right){x}+2938a-5089$$
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([1,0]),K([163,-94]),K([-5089,2938])])

gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([-1,1])),Pol(Vecrev([1,0])),Pol(Vecrev([163,-94])),Pol(Vecrev([-5089,2938]))], K);

magma: E := EllipticCurve([K![0,0],K![-1,1],K![1,0],K![163,-94],K![-5089,2938]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(25a)$$ = $$(a)\cdot(5)^{2}$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$1875$$ = $$3\cdot25^{2}$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$(-6075)$$ = $$(a)^{10}\cdot(5)^{2}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$36905625$$ = $$3^{10}\cdot25^{2}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$\frac{20480}{243}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$0$$ Torsion structure: trivial sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T);

## BSD invariants

 Analytic rank: $$0$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$0$$ Regulator: $$1$$ Period: $$4.36090721827132$$ Tamagawa product: $$2$$  =  $$2\cdot1$$ Torsion order: $$1$$ Leading coefficient: $$2.51777095637993$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$(a)$$ $$3$$ $$2$$ $$I_{10}$$ Non-split multiplicative $$1$$ $$1$$ $$10$$ $$10$$
$$(5)$$ $$25$$ $$1$$ $$II$$ Additive $$1$$ $$2$$ $$2$$ $$0$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$5$$ 5B.4.1

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 5.
Its isogeny class 1875.1-b consists of curves linked by isogenies of degree 5.

## Base change

This curve is the base change of 1200.c2, 225.e2, defined over $$\Q$$, so it is also a $$\Q$$-curve.