Properties

Label 2.2.12.1-1734.1-e2
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 1734 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+226{x}-2232\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([0,0]),K([226,0]),K([-2232,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([0,0]),Polrev([226,0]),Polrev([-2232,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![0,0],K![226,0],K![-2232,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((17a+51)\) = \((a+1)\cdot(a)\cdot(17)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1734 \) = \(2\cdot3\cdot289\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2927177028)\) = \((a+1)^{4}\cdot(a)^{32}\cdot(17)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 8568365353250912784 \) = \(2^{4}\cdot3^{32}\cdot289\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1276229915423}{2927177028} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{3645}{169} a + \frac{8053}{169} : -\frac{550395}{2197} a - \frac{888143}{2197} : 1\right)$
Height \(2.0085874455811399507919527976981821649\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(28 : -176 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.0085874455811399507919527976981821649 \)
Period: \( 0.54736169250054026898719933032466417714 \)
Tamagawa product: \( 128 \)  =  \(2^{2}\cdot2^{5}\cdot1\)
Torsion order: \(4\)
Leading coefficient: \( 5.0780211247580717084996182285849529701 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a)\) \(3\) \(32\) \(I_{32}\) Split multiplicative \(-1\) \(1\) \(32\) \(32\)
\((17)\) \(289\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 1734.1-e consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 102.c6
\(\Q\) 2448.p6