Properties

Label 2.2.12.1-1734.1-b1
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 1734 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}-{x}^{2}-1644{x}+30942\)
sage: E = EllipticCurve([K([0,1]),K([-1,0]),K([0,0]),K([-1644,0]),K([30942,0])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,0]),Polrev([0,0]),Polrev([-1644,0]),Polrev([30942,0])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,0],K![0,0],K![-1644,0],K![30942,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((17a+51)\) = \((a+1)\cdot(a)\cdot(17)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1734 \) = \(2\cdot3\cdot289\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-125563633938)\) = \((a+1)^{2}\cdot(a)^{4}\cdot(17)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 15766226167716065387844 \) = \(2^{2}\cdot3^{4}\cdot289^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{491411892194497}{125563633938} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{87}{2} : \frac{87}{4} a + \frac{561}{4} : 1\right)$
Height \(1.9134908847442385566857514407286902998\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{49}{2} : -\frac{49}{4} a - \frac{289}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.9134908847442385566857514407286902998 \)
Period: \( 0.98700620318056212664186789359698854142 \)
Tamagawa product: \( 32 \)  =  \(2\cdot2\cdot2^{3}\)
Torsion order: \(4\)
Leading coefficient: \( 2.1807990443685893313128782856780766879 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((17)\) \(289\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 1734.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 306.b3
\(\Q\) 816.b3