Learn more

Refine search


Results (24 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1734.1-a1 1734.1-a \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.286507785$ $5.588174083$ 1.848739513 \( \frac{46268279}{46818} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( 8\) , \( 10\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}+8{x}+10$
1734.1-a2 1734.1-a \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.143253892$ $22.35269633$ 1.848739513 \( \frac{1771561}{612} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -2\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-2{x}$
1734.1-b1 1734.1-b \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.913490884$ $0.987006203$ 2.180799044 \( -\frac{491411892194497}{125563633938} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -1644\) , \( 30942\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1644{x}+30942$
1734.1-b2 1734.1-b \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.826981769$ $0.987006203$ 2.180799044 \( \frac{1276229915423}{2927177028} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 226\) , \( 2232\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+226{x}+2232$
1734.1-b3 1734.1-b \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.913490884$ $3.948024812$ 2.180799044 \( \frac{163936758817}{30338064} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -114\) , \( 396\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-114{x}+396$
1734.1-b4 1734.1-b \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.956745442$ $3.948024812$ 2.180799044 \( \frac{4354703137}{352512} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -34\) , \( -68\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-34{x}-68$
1734.1-b5 1734.1-b \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $3.826981769$ $3.948024812$ 2.180799044 \( \frac{576615941610337}{27060804} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -1734\) , \( 27936\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1734{x}+27936$
1734.1-b6 1734.1-b \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.913490884$ $3.948024812$ 2.180799044 \( \frac{2361739090258884097}{5202} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -27744\) , \( 1781010\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-27744{x}+1781010$
1734.1-c1 1734.1-c \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.356490835$ 2.469840961 \( -\frac{1107111813625}{1228691592} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -217\) , \( -2063\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-217{x}-2063$
1734.1-c2 1734.1-c \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.356490835$ 2.469840961 \( \frac{655215969476375}{1001033261568} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 1808\) , \( 37789\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+1808{x}+37789$
1734.1-c3 1734.1-c \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.425963343$ 2.469840961 \( \frac{46753267515625}{11591221248} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -752\) , \( 6045\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-752{x}+6045$
1734.1-c4 1734.1-c \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.425963343$ 2.469840961 \( \frac{1845026709625}{793152} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -257\) , \( -1551\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-257{x}-1551$
1734.1-d1 1734.1-d \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.296073030$ $3.794149094$ 5.188509319 \( \frac{46268279}{46818} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 7\) , \( -3\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+7{x}-3$
1734.1-d2 1734.1-d \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.148036515$ $15.17659637$ 5.188509319 \( \frac{1771561}{612} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -3\) , \( -3\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-3{x}-3$
1734.1-e1 1734.1-e \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.017174891$ $0.136840423$ 5.078021124 \( -\frac{491411892194497}{125563633938} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -1644\) , \( -30942\bigr] \) ${y}^2+{x}{y}={x}^{3}-1644{x}-30942$
1734.1-e2 1734.1-e \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.008587445$ $0.547361692$ 5.078021124 \( \frac{1276229915423}{2927177028} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( 226\) , \( -2232\bigr] \) ${y}^2+{x}{y}={x}^{3}+226{x}-2232$
1734.1-e3 1734.1-e \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.004293722$ $2.189446770$ 5.078021124 \( \frac{163936758817}{30338064} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -114\) , \( -396\bigr] \) ${y}^2+{x}{y}={x}^{3}-114{x}-396$
1734.1-e4 1734.1-e \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/8\Z$ $\mathrm{SU}(2)$ $0.502146861$ $8.757787080$ 5.078021124 \( \frac{4354703137}{352512} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -34\) , \( 68\bigr] \) ${y}^2+{x}{y}={x}^{3}-34{x}+68$
1734.1-e5 1734.1-e \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.008587445$ $0.547361692$ 5.078021124 \( \frac{576615941610337}{27060804} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -1734\) , \( -27936\bigr] \) ${y}^2+{x}{y}={x}^{3}-1734{x}-27936$
1734.1-e6 1734.1-e \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.017174891$ $0.136840423$ 5.078021124 \( \frac{2361739090258884097}{5202} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -27744\) , \( -1781010\bigr] \) ${y}^2+{x}{y}={x}^{3}-27744{x}-1781010$
1734.1-f1 1734.1-f \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.940539524$ 1.493828022 \( -\frac{1107111813625}{1228691592} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -216\) , \( 2062\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-216{x}+2062$
1734.1-f2 1734.1-f \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.215615502$ 1.493828022 \( \frac{655215969476375}{1001033261568} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 1809\) , \( -37790\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+1809{x}-37790$
1734.1-f3 1734.1-f \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.862462010$ 1.493828022 \( \frac{46753267515625}{11591221248} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -751\) , \( -6046\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-751{x}-6046$
1734.1-f4 1734.1-f \(\Q(\sqrt{3}) \) \( 2 \cdot 3 \cdot 17^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $7.762158097$ 1.493828022 \( \frac{1845026709625}{793152} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -256\) , \( 1550\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-256{x}+1550$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.