Properties

Label 2.2.12.1-1458.1-p3
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 1458 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(5302a-9186\right){x}+563242a-975566\)
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([1,1]),K([-9186,5302]),K([-975566,563242])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([1,1]),Polrev([-9186,5302]),Polrev([-975566,563242])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,0],K![1,1],K![-9186,5302],K![-975566,563242]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((27a+27)\) = \((a+1)\cdot(a)^{6}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1458 \) = \(2\cdot3^{6}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-169869312)\) = \((a+1)^{42}\cdot(a)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 28855583159353344 \) = \(2^{42}\cdot3^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1159088625}{2097152} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-51 a + 91 : -258 a + 448 : 1\right)$
Height \(1.0267244893349748108615965951594791037\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-75 a + 131 : 894 a - 1552 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.0267244893349748108615965951594791037 \)
Period: \( 0.52085241842792041319755632697253449779 \)
Tamagawa product: \( 126 \)  =  \(( 2 \cdot 3 \cdot 7 )\cdot3\)
Torsion order: \(3\)
Leading coefficient: \( 4.3225100752781365183402746128135951273 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(2\) \(42\) \(I_{42}\) Split multiplicative \(-1\) \(1\) \(42\) \(42\)
\((a)\) \(3\) \(3\) \(IV\) Additive \(1\) \(6\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1
\(7\) 7B.2.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 7 and 21.
Its isogeny class 1458.1-p consists of curves linked by isogenies of degrees dividing 21.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 162.c2
\(\Q\) 1296.f2