Base field \(\Q(\sqrt{3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).
Elliptic curves in class 1458.1-p over \(\Q(\sqrt{3}) \)
Isogeny class 1458.1-p contains 4 curves linked by isogenies of degrees dividing 21.
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rrrr} 1 & 21 & 3 & 7 \\ 21 & 1 & 7 & 3 \\ 3 & 7 & 1 & 21 \\ 7 & 3 & 21 & 1 \end{array}\right)\)