Base field \(\Q(\sqrt{3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).
Elliptic curves in class 1458.1-j over \(\Q(\sqrt{3}) \)
Isogeny class 1458.1-j contains 2 curves linked by isogenies of degree 3.
Curve label | Weierstrass Coefficients |
---|---|
1458.1-j1 | \( \bigl[1\) , \( -1\) , \( 1\) , \( 3 a - 11\) , \( 5 a - 12\bigr] \) |
1458.1-j2 | \( \bigl[a\) , \( 0\) , \( 0\) , \( -3 a - 6\) , \( 4 a + 5\bigr] \) |
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)