Learn more

Refine search


Results (22 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
144.1-a1 144.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.098868579$ 1.211782339 \( -\frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 209 a - 410\) , \( 2494 a - 4159\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(209a-410\right){x}+2494a-4159$
144.1-a2 144.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.098868579$ 1.211782339 \( \frac{207646}{6561} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a + 10\) , \( -68 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a+10\right){x}-68a-1$
144.1-a3 144.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.395474317$ 1.211782339 \( \frac{2048}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 8 a + 15\) , \( 25 a + 43\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(8a+15\right){x}+25a+43$
144.1-a4 144.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $16.79094863$ 1.211782339 \( \frac{35152}{9} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 5\) , \( a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-5\right){x}+a-1$
144.1-a5 144.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.395474317$ 1.211782339 \( \frac{1556068}{81} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 20\) , \( -14 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-20\right){x}-14a-1$
144.1-a6 144.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.395474317$ 1.211782339 \( \frac{28756228}{3} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 50\) , \( 82 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-50\right){x}+82a-1$
144.1-a7 144.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.197737158$ 1.211782339 \( \frac{3065617154}{9} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -a - 290\) , \( -1040 a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-290\right){x}-1040a-1$
144.1-a8 144.1-a \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $4.197737158$ 1.211782339 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -211 a - 410\) , \( 2494 a + 4157\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-211a-410\right){x}+2494a+4157$
144.1-b1 144.1-b \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $-36$ $N(\mathrm{U}(1))$ $1$ $8.530775105$ 1.231311325 \( -44330496 a + 76771008 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 34 a - 60\) , \( -126 a + 218\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(34a-60\right){x}-126a+218$
144.1-b2 144.1-b \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $-36$ $N(\mathrm{U}(1))$ $1$ $8.530775105$ 1.231311325 \( -44330496 a + 76771008 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 34 a - 60\) , \( 126 a - 218\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(34a-60\right){x}+126a-218$
144.1-b3 144.1-b \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $8.530775105$ 1.231311325 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -6 a - 9\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-6a-9\right){x}$
144.1-b4 144.1-b \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $8.530775105$ 1.231311325 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 6 a - 9\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(6a-9\right){x}$
144.1-b5 144.1-b \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $-36$ $N(\mathrm{U}(1))$ $1$ $8.530775105$ 1.231311325 \( 44330496 a + 76771008 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -34 a - 60\) , \( -126 a - 218\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-34a-60\right){x}-126a-218$
144.1-b6 144.1-b \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $-36$ $N(\mathrm{U}(1))$ $1$ $8.530775105$ 1.231311325 \( 44330496 a + 76771008 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -34 a - 60\) , \( 126 a + 218\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-34a-60\right){x}+126a+218$
144.1-c1 144.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $4.197737158$ 1.211782339 \( -\frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 43232 a - 74880\) , \( -6451984 a + 11175164\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(43232a-74880\right){x}-6451984a+11175164$
144.1-c2 144.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.098868579$ 1.211782339 \( \frac{207646}{6561} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -658 a + 1140\) , \( 88718 a - 153664\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-658a+1140\right){x}+88718a-153664$
144.1-c3 144.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.395474317$ 1.211782339 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -8 a + 15\) , \( -25 a + 43\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-8a+15\right){x}-25a+43$
144.1-c4 144.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $16.79094863$ 1.211782339 \( \frac{35152}{9} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 182 a - 315\) , \( -1366 a + 2366\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(182a-315\right){x}-1366a+2366$
144.1-c5 144.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.395474317$ 1.211782339 \( \frac{1556068}{81} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 1022 a - 1770\) , \( 22034 a - 38164\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(1022a-1770\right){x}+22034a-38164$
144.1-c6 144.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.395474317$ 1.211782339 \( \frac{28756228}{3} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 2702 a - 4680\) , \( -101392 a + 175616\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(2702a-4680\right){x}-101392a+175616$
144.1-c7 144.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.197737158$ 1.211782339 \( \frac{3065617154}{9} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 16142 a - 27960\) , \( 1464590 a - 2536744\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(16142a-27960\right){x}+1464590a-2536744$
144.1-c8 144.1-c \(\Q(\sqrt{3}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.098868579$ 1.211782339 \( \frac{79558124472974}{3} a + 45932904578280 \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 2492 a - 4320\) , \( -117544 a + 203588\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(2492a-4320\right){x}-117544a+203588$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.