Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
100.1-a1 100.1-a \(\Q(\sqrt{3}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 1.492977957 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -37 a - 62\) , \( 226 a + 392\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-37a-62\right){x}+226a+392$
100.1-a2 100.1-a \(\Q(\sqrt{3}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 1.492977957 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 3 a + 8\) , \( -4 a - 6\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(3a+8\right){x}-4a-6$
100.1-a3 100.1-a \(\Q(\sqrt{3}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 1.492977957 \( \frac{16384}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-{x}$
100.1-a4 100.1-a \(\Q(\sqrt{3}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 1.492977957 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -41\) , \( 116\bigr] \) ${y}^2={x}^{3}-{x}^{2}-41{x}+116$
100.1-b1 100.1-b \(\Q(\sqrt{3}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.772687765$ 0.767596318 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -37 a - 65\) , \( -263 a - 456\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-37a-65\right){x}-263a-456$
100.1-b2 100.1-b \(\Q(\sqrt{3}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $15.95418988$ 0.767596318 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 3 a + 5\) , \( 7 a + 12\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(3a+5\right){x}+7a+12$
100.1-b3 100.1-b \(\Q(\sqrt{3}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $31.90837977$ 0.767596318 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-{x}$
100.1-b4 100.1-b \(\Q(\sqrt{3}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.545375530$ 0.767596318 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^{3}+{x}^{2}-41{x}-116$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.