Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
100.1-a1 |
100.1-a |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
100.1 |
\( 2^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{12} \) |
$0.97888$ |
$(a+1), (5)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$10.34365470$ |
1.492977957 |
\( -\frac{20720464}{15625} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -37 a - 62\) , \( 226 a + 392\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-37a-62\right){x}+226a+392$ |
100.1-a2 |
100.1-a |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
100.1 |
\( 2^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{4} \) |
$0.97888$ |
$(a+1), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$10.34365470$ |
1.492977957 |
\( \frac{21296}{25} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 3 a + 8\) , \( -4 a - 6\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(3a+8\right){x}-4a-6$ |
100.1-a3 |
100.1-a |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
100.1 |
\( 2^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{2} \) |
$0.97888$ |
$(a+1), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 1 \) |
$1$ |
$20.68730941$ |
1.492977957 |
\( \frac{16384}{5} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( 0\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-{x}$ |
100.1-a4 |
100.1-a |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
100.1 |
\( 2^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{6} \) |
$0.97888$ |
$(a+1), (5)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 3^{2} \) |
$1$ |
$20.68730941$ |
1.492977957 |
\( \frac{488095744}{125} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -41\) , \( 116\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-41{x}+116$ |
100.1-b1 |
100.1-b |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
100.1 |
\( 2^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{12} \) |
$0.97888$ |
$(a+1), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$1.772687765$ |
0.767596318 |
\( -\frac{20720464}{15625} \) |
\( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -37 a - 65\) , \( -263 a - 456\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-37a-65\right){x}-263a-456$ |
100.1-b2 |
100.1-b |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
100.1 |
\( 2^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{4} \) |
$0.97888$ |
$(a+1), (5)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$15.95418988$ |
0.767596318 |
\( \frac{21296}{25} \) |
\( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 3 a + 5\) , \( 7 a + 12\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(3a+5\right){x}+7a+12$ |
100.1-b3 |
100.1-b |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
100.1 |
\( 2^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{2} \) |
$0.97888$ |
$(a+1), (5)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 3 \) |
$1$ |
$31.90837977$ |
0.767596318 |
\( \frac{16384}{5} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-{x}$ |
100.1-b4 |
100.1-b |
$4$ |
$6$ |
\(\Q(\sqrt{3}) \) |
$2$ |
$[2, 0]$ |
100.1 |
\( 2^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{6} \) |
$0.97888$ |
$(a+1), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 3 \) |
$1$ |
$3.545375530$ |
0.767596318 |
\( \frac{488095744}{125} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-41{x}-116$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.