Properties

Label 2.2.105.1-5.1-d3
Base field \(\Q(\sqrt{105}) \)
Conductor norm \( 5 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{105}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 26 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-26, -1, 1]))
 
gp: K = nfinit(Polrev([-26, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-26, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-24a-109\right){x}+140a+644\)
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([1,1]),K([-109,-24]),K([644,140])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([1,1]),Polrev([-109,-24]),Polrev([644,140])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,0],K![1,1],K![-109,-24],K![644,140]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a-11)\) = \((2a-11)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((125)\) = \((2a-11)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 15625 \) = \(5^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2803221}{125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{17}{16} a + \frac{43}{8} : -\frac{11}{64} a + \frac{23}{32} : 1\right)$
Height \(0.68924851942526150653827054318398660397\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-\frac{7}{4} a - \frac{31}{4} : \frac{3}{8} a + \frac{27}{8} : 1\right)$ $\left(\frac{3}{4} a + \frac{7}{2} : -\frac{7}{8} a - \frac{9}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.68924851942526150653827054318398660397 \)
Period: \( 33.762540382564968316276389652354882852 \)
Tamagawa product: \( 6 \)
Torsion order: \(4\)
Leading coefficient: \( 1.7032467635170146272480656800952857667 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a-11)\) \(5\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3Nn

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 5.1-d consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.