Base field \(\Q(\sqrt{105}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 26 \); class number \(2\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-26, -1, 1]))
gp: K = nfinit(Polrev([-26, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-26, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([0,0]),K([-231292042,-50025583]),K([-2016199270740,-436078729470])])
gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([0,0]),Polrev([-231292042,-50025583]),Polrev([-2016199270740,-436078729470])], K);
magma: E := EllipticCurve([K![0,1],K![0,0],K![0,0],K![-231292042,-50025583],K![-2016199270740,-436078729470]]);
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((15,a+7)\) | = | \((3,a+1)\cdot(2a-11)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 15 \) | = | \(3\cdot5\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-285a+1890)\) | = | \((2,a)^{12}\cdot(3,a+1)^{2}\cdot(2a-11)^{2}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 921600 \) | = | \(2^{12}\cdot3^{2}\cdot5^{2}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
Minimal discriminant: | \((15)\) | = | \((3,a+1)^{2}\cdot(2a-11)^{2}\) |
Minimal discriminant norm: | \( 225 \) | = | \(3^{2}\cdot5^{2}\) |
j-invariant: | \( \frac{56667352321}{15} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(-\frac{80342}{63} a - \frac{371572}{63} : \frac{523580}{147} a + \frac{21781360}{1323} : 1\right)$ |
Height | \(2.7567123072963566212538971541711746209\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-\frac{5105}{4} a - \frac{11805}{2} : \frac{28715}{8} a + \frac{66365}{4} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 2.7567123072963566212538971541711746209 \) | ||
Period: | \( 2.5479892317162140901436667769415122025 \) | ||
Tamagawa product: | \( 4 \) = \(1\cdot2\cdot2\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 1.3709587240849577178389482212994134322 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
Primes of good reduction for the curve but which divide the
discriminant of the model above (if any) are included.
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2,a)\) | \(2\) | \(1\) | \(I_0\) | Good | \(1\) | \(0\) | \(0\) | \(0\) |
\((3,a+1)\) | \(3\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
\((2a-11)\) | \(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4, 8 and 16.
Its isogeny class
15.1-a
consists of curves linked by isogenies of
degrees dividing 16.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 225.b4 |
\(\Q\) | 735.c4 |