Learn more

Refine search


Results (11 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
5776.2-a1 5776.2-a \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.147598025$ $4.830783773$ 1.008354273 \( -\frac{4194304}{19} \) \( \bigl[0\) , \( 1\) , \( a\) , \( -5\) , \( -6\bigr] \) ${y}^2+a{y}={x}^{3}+{x}^{2}-5{x}-6$
5776.2-b1 5776.2-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.062267605$ $4.606662983$ 3.245290616 \( -\frac{31250}{19} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -2\) , \( -2\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-2{x}-2$
5776.2-c1 5776.2-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.278258698$ $1.705295099$ 2.684251981 \( -\frac{413493625}{152} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -62\) , \( 178\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-62{x}+178$
5776.2-c2 5776.2-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.504328284$ $0.189477233$ 2.684251981 \( -\frac{69173457625}{2550136832} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -342\) , \( -19646\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-342{x}-19646$
5776.2-c3 5776.2-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.834776094$ $0.568431699$ 2.684251981 \( \frac{94196375}{3511808} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 38\) , \( 722\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+38{x}+722$
5776.2-d1 5776.2-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.065585187$ $0.482527981$ 4.475517586 \( -\frac{37966934881}{4952198} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -279\) , \( -1950\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-279{x}-1950$
5776.2-d2 5776.2-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.327925939$ $2.412639906$ 4.475517586 \( -\frac{1}{608} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 1\) , \( 10\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}+10$
5776.2-e1 5776.2-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $9.167331319$ $0.467654504$ 6.062936882 \( -\frac{50357871050752}{19} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -3077\) , \( -64681\bigr] \) ${y}^2={x}^{3}-{x}^{2}-3077{x}-64681$
5776.2-e2 5776.2-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.055777106$ $1.402963512$ 6.062936882 \( -\frac{89915392}{6859} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -37\) , \( -81\bigr] \) ${y}^2={x}^{3}-{x}^{2}-37{x}-81$
5776.2-e3 5776.2-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.018592368$ $4.208890537$ 6.062936882 \( \frac{32768}{19} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 3\) , \( -1\bigr] \) ${y}^2={x}^{3}-{x}^{2}+3{x}-1$
5776.2-f1 5776.2-f \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $6.794444758$ 4.804397963 \( -\frac{1024}{19} \) \( \bigl[0\) , \( -1\) , \( a\) , \( 0\) , \( 1\bigr] \) ${y}^2+a{y}={x}^{3}-{x}^{2}+1$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.