Properties

Label 2.0.8.1-5202.5-i7
Base field \(\Q(\sqrt{-2}) \)
Conductor \((51a)\)
Conductor norm \( 5202 \)
CM no
Base change yes: 102.c2,3264.bc2
Q-curve yes
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([2, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}-1734{x}-27936\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([0,0]),K([-1734,0]),K([-27936,0])])
 
gp: E = ellinit([Pol(Vecrev([1,0])),Pol(Vecrev([0,0])),Pol(Vecrev([0,0])),Pol(Vecrev([-1734,0])),Pol(Vecrev([-27936,0]))], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![0,0],K![-1734,0],K![-27936,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((51a)\) = \((a)\cdot(-a-1)\cdot(a-1)\cdot(-2a+3)\cdot(2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5202 \) = \(2\cdot3\cdot3\cdot17\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((27060804)\) = \((a)^{4}\cdot(-a-1)^{4}\cdot(a-1)^{4}\cdot(-2a+3)^{4}\cdot(2a+3)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 732287113126416 \) = \(2^{4}\cdot3^{4}\cdot3^{4}\cdot17^{4}\cdot17^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{576615941610337}{27060804} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\times\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-\frac{97}{4} : \frac{97}{8} : 1\right)$ $\left(-3 a - 24 : -24 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.367508294423896 \)
Tamagawa product: \( 1024 \)  =  \(2^{2}\cdot2^{2}\cdot2^{2}\cdot2^{2}\cdot2^{2}\)
Torsion order: \(8\)
Leading coefficient: \( 4.15788171407103 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-a-1)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a-1)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-2a+3)\) \(17\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((2a+3)\) \(17\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 5202.5-i consists of curves linked by isogenies of degrees dividing 16.

Base change

This curve is the base change of 102.c2, 3264.bc2, defined over \(\Q\), so it is also a \(\Q\)-curve.