Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
48400.2-a1 |
48400.2-a |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{10} \cdot 5^{6} \cdot 11^{2} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
|
|
$1$ |
\( 2^{2} \cdot 3 \) |
$0.054095025$ |
$2.070993444$ |
1.901219664 |
\( -\frac{16241202}{1375} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -16\) , \( -20\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-16{x}-20$ |
48400.2-b1 |
48400.2-b |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{12} \cdot 5^{2} \cdot 11^{6} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \cdot 5 \) |
$0.046404488$ |
$1.581720524$ |
4.152070585 |
\( \frac{314878832}{805255} a + \frac{1086200609}{805255} \) |
\( \bigl[a\) , \( a\) , \( 0\) , \( 12 a - 4\) , \( -16 a\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(12a-4\right){x}-16a$ |
48400.2-c1 |
48400.2-c |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{8} \cdot 5^{2} \cdot 11^{4} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.248068626$ |
$2.978126157$ |
4.179168884 |
\( \frac{1048576}{605} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -5\) , \( -2\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-5{x}-2$ |
48400.2-c2 |
48400.2-c |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{4} \cdot 5^{4} \cdot 11^{2} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.992274504$ |
$2.978126157$ |
4.179168884 |
\( \frac{94875856}{275} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( -15\) , \( 25\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-15{x}+25$ |
48400.2-d1 |
48400.2-d |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{12} \cdot 5^{2} \cdot 11^{6} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \cdot 5 \) |
$0.046404488$ |
$1.581720524$ |
4.152070585 |
\( -\frac{314878832}{805255} a + \frac{1086200609}{805255} \) |
\( \bigl[a\) , \( -a\) , \( 0\) , \( -12 a - 4\) , \( 16 a\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-12a-4\right){x}+16a$ |
48400.2-e1 |
48400.2-e |
$2$ |
$3$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{26} \cdot 5^{2} \cdot 11^{6} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3$ |
3B |
$1$ |
\( 2^{2} \) |
$1$ |
$0.549489922$ |
1.554192200 |
\( -\frac{76711450249}{851840} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -354\) , \( 2530\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-354{x}+2530$ |
48400.2-e2 |
48400.2-e |
$2$ |
$3$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{54} \cdot 5^{6} \cdot 11^{2} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3$ |
3B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$0.183163307$ |
1.554192200 |
\( \frac{2882081488391}{2883584000} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 1186\) , \( 13618\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+1186{x}+13618$ |
48400.2-f1 |
48400.2-f |
$2$ |
$3$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{18} \cdot 5^{2} \cdot 11^{2} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3$ |
3B |
$1$ |
\( 2^{2} \) |
$0.209374945$ |
$2.511961094$ |
5.950351283 |
\( -\frac{117649}{440} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -4\) , \( 8\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-4{x}+8$ |
48400.2-f2 |
48400.2-f |
$2$ |
$3$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{14} \cdot 5^{6} \cdot 11^{6} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3$ |
3B |
$1$ |
\( 2^{2} \cdot 3^{3} \) |
$0.023263882$ |
$0.837320364$ |
5.950351283 |
\( \frac{80062991}{332750} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 36\) , \( -200\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+36{x}-200$ |
48400.2-g1 |
48400.2-g |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{8} \cdot 5^{4} \cdot 11^{2} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.449441034$ |
$3.446244963$ |
3.532089493 |
\( \frac{55296}{275} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 2\) , \( 3\bigr] \) |
${y}^2={x}^{3}+2{x}+3$ |
48400.2-g2 |
48400.2-g |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{4} \cdot 5^{2} \cdot 11^{4} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.724720517$ |
$3.446244963$ |
3.532089493 |
\( \frac{5256144}{605} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -5\) , \( -2\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-5{x}-2$ |
48400.2-h1 |
48400.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{8} \cdot 5^{24} \cdot 11^{4} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \cdot 3 \) |
$2.697878822$ |
$0.158331435$ |
3.624564542 |
\( -\frac{1957960715364}{29541015625} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -656\) , \( 34034\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-656{x}+34034$ |
48400.2-h2 |
48400.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{8} \cdot 5^{6} \cdot 11^{16} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{7} \cdot 3 \) |
$0.674469705$ |
$0.158331435$ |
3.624564542 |
\( \frac{46424454082884}{26794860125} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -1886\) , \( -680\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1886{x}-680$ |
48400.2-h3 |
48400.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{4} \cdot 5^{12} \cdot 11^{8} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \cdot 3 \) |
$1.348939411$ |
$0.316662871$ |
3.624564542 |
\( \frac{55537159171536}{228765625} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -1261\) , \( 17820\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1261{x}+17820$ |
48400.2-h4 |
48400.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{8} \cdot 5^{6} \cdot 11^{4} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \) |
$2.697878822$ |
$0.316662871$ |
3.624564542 |
\( \frac{885956203616256}{15125} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -5042\) , \( -137801\bigr] \) |
${y}^2={x}^{3}-5042{x}-137801$ |
48400.2-i1 |
48400.2-i |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{4} \cdot 5^{12} \cdot 11^{2} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 3 \) |
$1.686309128$ |
$1.493096680$ |
5.341108221 |
\( \frac{2122416}{171875} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 5\) , \( -42\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+5{x}-42$ |
48400.2-i2 |
48400.2-i |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{8} \cdot 5^{6} \cdot 11^{4} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \) |
$0.843154564$ |
$1.493096680$ |
5.341108221 |
\( \frac{379275264}{15125} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -38\) , \( 87\bigr] \) |
${y}^2={x}^{3}-38{x}+87$ |
48400.2-j1 |
48400.2-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{12} \cdot 5^{2} \cdot 11^{2} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$3.541244221$ |
2.504037803 |
\( \frac{59319}{55} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 4\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+4{x}$ |
48400.2-j2 |
48400.2-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{12} \cdot 5^{4} \cdot 11^{4} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.770622110$ |
2.504037803 |
\( \frac{8120601}{3025} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -16\) , \( 24\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-16{x}+24$ |
48400.2-j3 |
48400.2-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{12} \cdot 5^{2} \cdot 11^{8} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.885311055$ |
2.504037803 |
\( \frac{2749884201}{73205} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -116\) , \( -416\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-116{x}-416$ |
48400.2-j4 |
48400.2-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{12} \cdot 5^{8} \cdot 11^{2} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.885311055$ |
2.504037803 |
\( \frac{22930509321}{6875} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -236\) , \( 1520\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-236{x}+1520$ |
48400.2-k1 |
48400.2-k |
$2$ |
$5$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{14} \cdot 5^{2} \cdot 11^{10} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$5$ |
5B.4.2 |
$1$ |
\( 2^{2} \) |
$6.733584661$ |
$0.137614587$ |
10.48372894 |
\( -\frac{23178622194826561}{1610510} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -23759\) , \( -1405718\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-23759{x}-1405718$ |
48400.2-k2 |
48400.2-k |
$2$ |
$5$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{22} \cdot 5^{10} \cdot 11^{2} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$5$ |
5B.4.1 |
$1$ |
\( 2^{2} \cdot 5 \) |
$0.269343386$ |
$0.688072939$ |
10.48372894 |
\( \frac{109902239}{1100000} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 41\) , \( -398\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+41{x}-398$ |
48400.2-l1 |
48400.2-l |
$4$ |
$6$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{4} \cdot 5^{12} \cdot 11^{2} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$4$ |
\( 2 \cdot 3 \) |
$1$ |
$1.437433019$ |
6.098511811 |
\( \frac{436334416}{171875} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -24\) , \( -31\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-24{x}-31$ |
48400.2-l2 |
48400.2-l |
$4$ |
$6$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{8} \cdot 5^{6} \cdot 11^{4} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$1.437433019$ |
6.098511811 |
\( \frac{643956736}{15125} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -45\) , \( -100\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-45{x}-100$ |
48400.2-l3 |
48400.2-l |
$4$ |
$6$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{8} \cdot 5^{2} \cdot 11^{12} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$1$ |
$0.479144339$ |
6.098511811 |
\( \frac{610462990336}{8857805} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -445\) , \( 3720\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-445{x}+3720$ |
48400.2-l4 |
48400.2-l |
$4$ |
$6$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
48400.2 |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{4} \cdot 5^{4} \cdot 11^{6} \) |
$3.74882$ |
$(a), (a+3), (a-3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$4$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$0.479144339$ |
6.098511811 |
\( \frac{154639330142416}{33275} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -1774\) , \( -29081\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-1774{x}-29081$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.