Properties

Label 2.0.8.1-46818.8-f1
Base field \(\Q(\sqrt{-2}) \)
Conductor norm \( 46818 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a-20\right){x}+8a-54\)
sage: E = EllipticCurve([K([1,1]),K([1,1]),K([0,1]),K([-20,-2]),K([-54,8])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,1]),Polrev([0,1]),Polrev([-20,-2]),Polrev([-54,8])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,1],K![0,1],K![-20,-2],K![-54,8]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((153a)\) = \((a)\cdot(-a-1)^{2}\cdot(a-1)^{2}\cdot(-2a+3)\cdot(2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 46818 \) = \(2\cdot3^{2}\cdot3^{2}\cdot17\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((991440a-396576)\) = \((a)^{9}\cdot(-a-1)^{6}\cdot(a-1)^{9}\cdot(-2a+3)\cdot(2a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2123179070976 \) = \(2^{9}\cdot3^{6}\cdot3^{9}\cdot17\cdot17\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{226719}{544} a + \frac{33345}{272} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a - 5 : -3 a + 1 : 1\right)$
Height \(1.1309245602392836663407276135936290951\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.1309245602392836663407276135936290951 \)
Period: \( 1.2951672232311818958204118395866324435 \)
Tamagawa product: \( 2 \)  =  \(1\cdot1\cdot2\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 4.1429002276323372858660461761687848605 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(I_{9}\) Non-split multiplicative \(1\) \(1\) \(9\) \(9\)
\((-a-1)\) \(3\) \(1\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((a-1)\) \(3\) \(2\) \(III^{*}\) Additive \(1\) \(2\) \(9\) \(0\)
\((-2a+3)\) \(17\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((2a+3)\) \(17\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 46818.8-f consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.