Learn more

Refine search

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.


Results (1-50 of 68 matches)

Next   Download to        
Label Base field Conductor Isogeny class Weierstrass coefficients
46818.8-a1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-a \( \bigl[1\) , \( -1\) , \( 0\) , \( -27\) , \( -27\bigr] \)
46818.8-a2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-a \( \bigl[1\) , \( -1\) , \( 0\) , \( -1017\) , \( 8883\bigr] \)
46818.8-a3 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-a \( \bigl[1\) , \( -1\) , \( 0\) , \( -387\) , \( -2835\bigr] \)
46818.8-a4 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-a \( \bigl[1\) , \( -1\) , \( 0\) , \( -927\) , \( 11097\bigr] \)
46818.8-b1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-b \( \bigl[1\) , \( -1\) , \( 0\) , \( 810 a - 1224\) , \( 12316 a - 6136\bigr] \)
46818.8-b2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-b \( \bigl[1\) , \( -1\) , \( 0\) , \( 270 a - 504\) , \( -3488 a + 3512\bigr] \)
46818.8-c1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-c \( \bigl[1\) , \( -1\) , \( 0\) , \( -810 a - 1224\) , \( -12316 a - 6136\bigr] \)
46818.8-c2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-c \( \bigl[1\) , \( -1\) , \( 0\) , \( -270 a - 504\) , \( 3488 a + 3512\bigr] \)
46818.8-d1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-d \( \bigl[1\) , \( -1\) , \( a\) , \( -15989 a - 1674\) , \( -721701 a + 821106\bigr] \)
46818.8-d2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-d \( \bigl[1\) , \( -1\) , \( a\) , \( 76 a + 36\) , \( 90 a + 450\bigr] \)
46818.8-d3 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-d \( \bigl[1\) , \( -1\) , \( a\) , \( 76 a - 144\) , \( -666 a + 1566\bigr] \)
46818.8-d4 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-d \( \bigl[1\) , \( -1\) , \( a\) , \( -1004 a - 54\) , \( -11736 a + 11592\bigr] \)
46818.8-d5 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-d \( \bigl[1\) , \( -1\) , \( a\) , \( -3299 a + 3006\) , \( -23211 a - 155178\bigr] \)
46818.8-d6 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-d \( \bigl[1\) , \( -1\) , \( a\) , \( 1156 a - 3114\) , \( -37980 a + 60804\bigr] \)
46818.8-e1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-e \( \bigl[1\) , \( -1\) , \( a\) , \( -47 a + 15\) , \( -41 a + 119\bigr] \)
46818.8-e2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-e \( \bigl[1\) , \( -1\) , \( a\) , \( -677 a + 195\) , \( -3695 a + 10343\bigr] \)
46818.8-f1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-f \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -2 a - 20\) , \( 8 a - 54\bigr] \)
46818.8-g1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-g \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 261 a + 1011\) , \( 8904 a - 6811\bigr] \)
46818.8-g2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-g \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 21 a + 51\) , \( 216 a - 91\bigr] \)
46818.8-h1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-h \( \bigl[1\) , \( -1\) , \( a\) , \( 15988 a - 1674\) , \( 721701 a + 821106\bigr] \)
46818.8-h2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-h \( \bigl[1\) , \( -1\) , \( a\) , \( -77 a + 36\) , \( -90 a + 450\bigr] \)
46818.8-h3 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-h \( \bigl[1\) , \( -1\) , \( a\) , \( -77 a - 144\) , \( 666 a + 1566\bigr] \)
46818.8-h4 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-h \( \bigl[1\) , \( -1\) , \( a\) , \( 1003 a - 54\) , \( 11736 a + 11592\bigr] \)
46818.8-h5 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-h \( \bigl[1\) , \( -1\) , \( a\) , \( 3298 a + 3006\) , \( 23211 a - 155178\bigr] \)
46818.8-h6 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-h \( \bigl[1\) , \( -1\) , \( a\) , \( -1157 a - 3114\) , \( 37980 a + 60804\bigr] \)
46818.8-i1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-i \( \bigl[1\) , \( -1\) , \( a\) , \( 46 a + 15\) , \( 41 a + 119\bigr] \)
46818.8-i2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-i \( \bigl[1\) , \( -1\) , \( a\) , \( 676 a + 195\) , \( 3695 a + 10343\bigr] \)
46818.8-j1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-j \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -260 a + 1012\) , \( -7892 a - 6290\bigr] \)
46818.8-j2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-j \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -20 a + 52\) , \( -164 a - 50\bigr] \)
46818.8-k1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-k \( \bigl[1\) , \( -1\) , \( 0\) , \( -14796\) , \( 835434\bigr] \)
46818.8-k2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-k \( \bigl[1\) , \( -1\) , \( 0\) , \( 38745 a - 8316\) , \( 3718953 a + 3437478\bigr] \)
46818.8-k3 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-k \( \bigl[1\) , \( -1\) , \( 0\) , \( -38745 a - 8316\) , \( -3718953 a + 3437478\bigr] \)
46818.8-k4 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-k \( \bigl[1\) , \( -1\) , \( 0\) , \( 2034\) , \( 60264\bigr] \)
46818.8-k5 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-k \( \bigl[1\) , \( -1\) , \( 0\) , \( -1026\) , \( 10692\bigr] \)
46818.8-k6 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-k \( \bigl[1\) , \( -1\) , \( 0\) , \( -306\) , \( -1836\bigr] \)
46818.8-k7 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-k \( \bigl[1\) , \( -1\) , \( 0\) , \( -15606\) , \( 754272\bigr] \)
46818.8-k8 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-k \( \bigl[1\) , \( -1\) , \( 0\) , \( -249696\) , \( 48087270\bigr] \)
46818.8-l1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-l \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 3 a - 21\) , \( -28 a - 59\bigr] \)
46818.8-m1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-m \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -28 a - 13\) , \( -68 a + 61\bigr] \)
46818.8-m2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-m \( \bigl[1\) , \( -1\) , \( 1\) , \( 78 a - 17\) , \( 252 a + 245\bigr] \)
46818.8-n1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-n \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -19 a - 58\) , \( -145 a - 135\bigr] \)
46818.8-o1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-o \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -248 a - 1019\) , \( 4640 a + 12223\bigr] \)
46818.8-o2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-o \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -8 a - 59\) , \( 128 a + 223\bigr] \)
46818.8-p1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-p \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 28 a - 14\) , \( 55 a + 5\bigr] \)
46818.8-p2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-p \( \bigl[1\) , \( -1\) , \( 1\) , \( -78 a - 17\) , \( -252 a + 245\bigr] \)
46818.8-q1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-q \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 247 a - 1019\) , \( -4641 a + 12223\bigr] \)
46818.8-q2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-q \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 7 a - 59\) , \( -129 a + 223\bigr] \)
46818.8-r1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-r \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 19 a - 59\) , \( 87 a - 173\bigr] \)
46818.8-s1 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-s \( \bigl[1\) , \( -1\) , \( 1\) , \( -77040 a + 200605\) , \( 21906720 a + 28585379\bigr] \)
46818.8-s2 \(\Q(\sqrt{-2}) \) 46818.8 46818.8-s \( \bigl[1\) , \( -1\) , \( 1\) , \( 77040 a + 200605\) , \( -21906720 a + 28585379\bigr] \)
Next   Download to