Learn more

Refine search


Results (1-50 of 68 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
46818.8-a1 46818.8-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.562629009$ $1.396783906$ 2.222779266 \( \frac{3048625}{1088} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -27\) , \( -27\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-27{x}-27$
46818.8-a2 46818.8-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.843943514$ $0.232797317$ 2.222779266 \( \frac{159661140625}{48275138} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -1017\) , \( 8883\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-1017{x}+8883$
46818.8-a3 46818.8-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.281314504$ $0.698391953$ 2.222779266 \( \frac{8805624625}{2312} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -387\) , \( -2835\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-387{x}-2835$
46818.8-a4 46818.8-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $1.687887029$ $0.465594635$ 2.222779266 \( \frac{120920208625}{19652} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -927\) , \( 11097\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-927{x}+11097$
46818.8-b1 46818.8-b \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.181799250$ 1.028411862 \( -\frac{32297532210782725}{72553009816008} a + \frac{60468973557987577}{18138252454002} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 810 a - 1224\) , \( 12316 a - 6136\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(810a-1224\right){x}+12316a-6136$
46818.8-b2 46818.8-b \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.363598500$ 1.028411862 \( \frac{2091127194353}{409563864} a + \frac{36587816460805}{1638255456} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 270 a - 504\) , \( -3488 a + 3512\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(270a-504\right){x}-3488a+3512$
46818.8-c1 46818.8-c \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.181799250$ 1.028411862 \( \frac{32297532210782725}{72553009816008} a + \frac{60468973557987577}{18138252454002} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -810 a - 1224\) , \( -12316 a - 6136\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-810a-1224\right){x}-12316a-6136$
46818.8-c2 46818.8-c \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.363598500$ 1.028411862 \( -\frac{2091127194353}{409563864} a + \frac{36587816460805}{1638255456} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -270 a - 504\) , \( 3488 a + 3512\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-270a-504\right){x}+3488a+3512$
46818.8-d1 46818.8-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.164250428$ $0.106112399$ 3.798760962 \( -\frac{28973973968878862165}{10170654348978} a - \frac{227019597633725057126}{5085327174489} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -15989 a - 1674\) , \( -721701 a + 821106\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-15989a-1674\right){x}-721701a+821106$
46818.8-d2 46818.8-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.395531303$ $0.848899193$ 3.798760962 \( \frac{63405599}{7803} a - \frac{2377909445}{124848} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 76 a + 36\) , \( 90 a + 450\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(76a+36\right){x}+90a+450$
46818.8-d3 46818.8-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.791062607$ $0.424449596$ 3.798760962 \( \frac{21406940170}{60886809} a - \frac{61807844839}{243547236} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 76 a - 144\) , \( -666 a + 1566\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(76a-144\right){x}-666a+1566$
46818.8-d4 46818.8-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.582125214$ $0.212224798$ 3.798760962 \( -\frac{208995993887450}{44386483761} a + \frac{92858826184591}{88772967522} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -1004 a - 54\) , \( -11736 a + 11592\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-1004a-54\right){x}-11736a+11592$
46818.8-d5 46818.8-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.164250428$ $0.106112399$ 3.798760962 \( \frac{689132974759173725}{163244272086018} a + \frac{92030074203444902}{81622136043009} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -3299 a + 3006\) , \( -23211 a - 155178\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-3299a+3006\right){x}-23211a-155178$
46818.8-d6 46818.8-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.582125214$ $0.212224798$ 3.798760962 \( -\frac{132789029221532066}{188345450907} a + \frac{141186623119318075}{376690901814} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 1156 a - 3114\) , \( -37980 a + 60804\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(1156a-3114\right){x}-37980a+60804$
46818.8-e1 46818.8-e \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.792387896$ $0.896277065$ 4.017492791 \( -\frac{10134163}{31212} a + \frac{189430291}{62424} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -47 a + 15\) , \( -41 a + 119\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-47a+15\right){x}-41a+119$
46818.8-e2 46818.8-e \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.584775793$ $0.448138532$ 4.017492791 \( -\frac{1258183485493}{842724} a + \frac{1945154445061}{421362} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -677 a + 195\) , \( -3695 a + 10343\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-677a+195\right){x}-3695a+10343$
46818.8-f1 46818.8-f \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.130924560$ $1.295167223$ 4.142900227 \( -\frac{226719}{544} a + \frac{33345}{272} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -2 a - 20\) , \( 8 a - 54\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a-20\right){x}+8a-54$
46818.8-g1 46818.8-g \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.396508680$ 2.242991812 \( \frac{3211264065267}{2672672} a - \frac{97299436113}{668168} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 261 a + 1011\) , \( 8904 a - 6811\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(261a+1011\right){x}+8904a-6811$
46818.8-g2 46818.8-g \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.793017360$ 2.242991812 \( -\frac{22586499}{36992} a - \frac{35754561}{147968} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 21 a + 51\) , \( 216 a - 91\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(21a+51\right){x}+216a-91$
46818.8-h1 46818.8-h \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.164250428$ $0.106112399$ 3.798760962 \( \frac{28973973968878862165}{10170654348978} a - \frac{227019597633725057126}{5085327174489} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 15988 a - 1674\) , \( 721701 a + 821106\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(15988a-1674\right){x}+721701a+821106$
46818.8-h2 46818.8-h \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.395531303$ $0.848899193$ 3.798760962 \( -\frac{63405599}{7803} a - \frac{2377909445}{124848} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -77 a + 36\) , \( -90 a + 450\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-77a+36\right){x}-90a+450$
46818.8-h3 46818.8-h \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.791062607$ $0.424449596$ 3.798760962 \( -\frac{21406940170}{60886809} a - \frac{61807844839}{243547236} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -77 a - 144\) , \( 666 a + 1566\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-77a-144\right){x}+666a+1566$
46818.8-h4 46818.8-h \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.582125214$ $0.212224798$ 3.798760962 \( \frac{208995993887450}{44386483761} a + \frac{92858826184591}{88772967522} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 1003 a - 54\) , \( 11736 a + 11592\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(1003a-54\right){x}+11736a+11592$
46818.8-h5 46818.8-h \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.164250428$ $0.106112399$ 3.798760962 \( -\frac{689132974759173725}{163244272086018} a + \frac{92030074203444902}{81622136043009} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 3298 a + 3006\) , \( 23211 a - 155178\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(3298a+3006\right){x}+23211a-155178$
46818.8-h6 46818.8-h \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.582125214$ $0.212224798$ 3.798760962 \( \frac{132789029221532066}{188345450907} a + \frac{141186623119318075}{376690901814} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -1157 a - 3114\) , \( 37980 a + 60804\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-1157a-3114\right){x}+37980a+60804$
46818.8-i1 46818.8-i \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.792387896$ $0.896277065$ 4.017492791 \( \frac{10134163}{31212} a + \frac{189430291}{62424} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 46 a + 15\) , \( 41 a + 119\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(46a+15\right){x}+41a+119$
46818.8-i2 46818.8-i \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.584775793$ $0.448138532$ 4.017492791 \( \frac{1258183485493}{842724} a + \frac{1945154445061}{421362} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 676 a + 195\) , \( 3695 a + 10343\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(676a+195\right){x}+3695a+10343$
46818.8-j1 46818.8-j \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.396508680$ 2.242991812 \( -\frac{3211264065267}{2672672} a - \frac{97299436113}{668168} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -260 a + 1012\) , \( -7892 a - 6290\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-260a+1012\right){x}-7892a-6290$
46818.8-j2 46818.8-j \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.793017360$ 2.242991812 \( \frac{22586499}{36992} a - \frac{35754561}{147968} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -20 a + 52\) , \( -164 a - 50\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-20a+52\right){x}-164a-50$
46818.8-k1 46818.8-k \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $6.825015489$ $0.061251382$ 4.729601183 \( -\frac{491411892194497}{125563633938} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -14796\) , \( 835434\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-14796{x}+835434$
46818.8-k2 46818.8-k \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $13.65003097$ $0.030625691$ 4.729601183 \( -\frac{61437923106397764191713}{291967151254001210886} a - \frac{146204680417750243067160}{48661191875666868481} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 38745 a - 8316\) , \( 3718953 a + 3437478\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(38745a-8316\right){x}+3718953a+3437478$
46818.8-k3 46818.8-k \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $13.65003097$ $0.030625691$ 4.729601183 \( \frac{61437923106397764191713}{291967151254001210886} a - \frac{146204680417750243067160}{48661191875666868481} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -38745 a - 8316\) , \( -3718953 a + 3437478\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-38745a-8316\right){x}-3718953a+3437478$
46818.8-k4 46818.8-k \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.412507744$ $0.122502764$ 4.729601183 \( \frac{1276229915423}{2927177028} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 2034\) , \( 60264\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+2034{x}+60264$
46818.8-k5 46818.8-k \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.706253872$ $0.245005529$ 4.729601183 \( \frac{163936758817}{30338064} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -1026\) , \( 10692\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-1026{x}+10692$
46818.8-k6 46818.8-k \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.412507744$ $0.490011059$ 4.729601183 \( \frac{4354703137}{352512} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -306\) , \( -1836\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-306{x}-1836$
46818.8-k7 46818.8-k \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.412507744$ $0.122502764$ 4.729601183 \( \frac{576615941610337}{27060804} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -15606\) , \( 754272\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-15606{x}+754272$
46818.8-k8 46818.8-k \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.825015489$ $0.061251382$ 4.729601183 \( \frac{2361739090258884097}{5202} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -249696\) , \( 48087270\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-249696{x}+48087270$
46818.8-l1 46818.8-l \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.130924560$ $1.295167223$ 4.142900227 \( \frac{226719}{544} a + \frac{33345}{272} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 3 a - 21\) , \( -28 a - 59\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(3a-21\right){x}-28a-59$
46818.8-m1 46818.8-m \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.211325602$ 1.713073095 \( \frac{15001729}{9826} a + \frac{21921853}{4913} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -28 a - 13\) , \( -68 a + 61\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-28a-13\right){x}-68a+61$
46818.8-m2 46818.8-m \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $1.211325602$ 1.713073095 \( -\frac{14617424683}{19652} a + \frac{8141969531}{9826} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 78 a - 17\) , \( 252 a + 245\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(78a-17\right){x}+252a+245$
46818.8-n1 46818.8-n \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.468398076$ $0.937654098$ 7.788636801 \( \frac{15611652125}{6022998} a - \frac{2454677125}{3011499} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -19 a - 58\) , \( -145 a - 135\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-19a-58\right){x}-145a-135$
46818.8-o1 46818.8-o \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.390117407$ $0.396508680$ 7.875271360 \( -\frac{3211264065267}{2672672} a - \frac{97299436113}{668168} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -248 a - 1019\) , \( 4640 a + 12223\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-248a-1019\right){x}+4640a+12223$
46818.8-o2 46818.8-o \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.195058703$ $0.793017360$ 7.875271360 \( \frac{22586499}{36992} a - \frac{35754561}{147968} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -8 a - 59\) , \( 128 a + 223\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-8a-59\right){x}+128a+223$
46818.8-p1 46818.8-p \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.211325602$ 1.713073095 \( -\frac{15001729}{9826} a + \frac{21921853}{4913} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 28 a - 14\) , \( 55 a + 5\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(28a-14\right){x}+55a+5$
46818.8-p2 46818.8-p \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $1.211325602$ 1.713073095 \( \frac{14617424683}{19652} a + \frac{8141969531}{9826} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -78 a - 17\) , \( -252 a + 245\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-78a-17\right){x}-252a+245$
46818.8-q1 46818.8-q \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.390117407$ $0.396508680$ 7.875271360 \( \frac{3211264065267}{2672672} a - \frac{97299436113}{668168} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 247 a - 1019\) , \( -4641 a + 12223\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(247a-1019\right){x}-4641a+12223$
46818.8-q2 46818.8-q \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.195058703$ $0.793017360$ 7.875271360 \( -\frac{22586499}{36992} a - \frac{35754561}{147968} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 7 a - 59\) , \( -129 a + 223\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(7a-59\right){x}-129a+223$
46818.8-r1 46818.8-r \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.468398076$ $0.937654098$ 7.788636801 \( -\frac{15611652125}{6022998} a - \frac{2454677125}{3011499} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 19 a - 59\) , \( 87 a - 173\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(19a-59\right){x}+87a-173$
46818.8-s1 46818.8-s \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.023103774$ 2.352504294 \( -\frac{795638018697416056308875}{122322703950862781472} a - \frac{740752568391229768255000}{3822584498464461921} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -77040 a + 200605\) , \( 21906720 a + 28585379\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-77040a+200605\right){x}+21906720a+28585379$
46818.8-s2 46818.8-s \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{4} \cdot 17^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.023103774$ 2.352504294 \( \frac{795638018697416056308875}{122322703950862781472} a - \frac{740752568391229768255000}{3822584498464461921} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 77040 a + 200605\) , \( -21906720 a + 28585379\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(77040a+200605\right){x}-21906720a+28585379$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.