| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 46818.8-a1 |
46818.8-a |
$4$ |
$6$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{12} \cdot 17^{2} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{3} \) |
$0.562629009$ |
$1.396783906$ |
2.222779266 |
\( \frac{3048625}{1088} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -27\) , \( -27\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-27{x}-27$ |
| 46818.8-a2 |
46818.8-a |
$4$ |
$6$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{12} \cdot 17^{12} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{5} \cdot 3^{2} \) |
$0.843943514$ |
$0.232797317$ |
2.222779266 |
\( \frac{159661140625}{48275138} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -1017\) , \( 8883\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-1017{x}+8883$ |
| 46818.8-a3 |
46818.8-a |
$4$ |
$6$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{12} \cdot 17^{4} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{5} \) |
$0.281314504$ |
$0.698391953$ |
2.222779266 |
\( \frac{8805624625}{2312} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -387\) , \( -2835\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-387{x}-2835$ |
| 46818.8-a4 |
46818.8-a |
$4$ |
$6$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 17^{6} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$1.687887029$ |
$0.465594635$ |
2.222779266 |
\( \frac{120920208625}{19652} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -927\) , \( 11097\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-927{x}+11097$ |
| 46818.8-b1 |
46818.8-b |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{5} \cdot 3^{36} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.181799250$ |
1.028411862 |
\( -\frac{32297532210782725}{72553009816008} a + \frac{60468973557987577}{18138252454002} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( 810 a - 1224\) , \( 12316 a - 6136\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(810a-1224\right){x}+12316a-6136$ |
| 46818.8-b2 |
46818.8-b |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{24} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.363598500$ |
1.028411862 |
\( \frac{2091127194353}{409563864} a + \frac{36587816460805}{1638255456} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( 270 a - 504\) , \( -3488 a + 3512\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(270a-504\right){x}-3488a+3512$ |
| 46818.8-c1 |
46818.8-c |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{5} \cdot 3^{36} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.181799250$ |
1.028411862 |
\( \frac{32297532210782725}{72553009816008} a + \frac{60468973557987577}{18138252454002} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -810 a - 1224\) , \( -12316 a - 6136\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-810a-1224\right){x}-12316a-6136$ |
| 46818.8-c2 |
46818.8-c |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{24} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.363598500$ |
1.028411862 |
\( -\frac{2091127194353}{409563864} a + \frac{36587816460805}{1638255456} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -270 a - 504\) , \( 3488 a + 3512\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-270a-504\right){x}+3488a+3512$ |
| 46818.8-d1 |
46818.8-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2 \cdot 3^{20} \cdot 17^{9} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$3.164250428$ |
$0.106112399$ |
3.798760962 |
\( -\frac{28973973968878862165}{10170654348978} a - \frac{227019597633725057126}{5085327174489} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -15989 a - 1674\) , \( -721701 a + 821106\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-15989a-1674\right){x}-721701a+821106$ |
| 46818.8-d2 |
46818.8-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{16} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.395531303$ |
$0.848899193$ |
3.798760962 |
\( \frac{63405599}{7803} a - \frac{2377909445}{124848} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 76 a + 36\) , \( 90 a + 450\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(76a+36\right){x}+90a+450$ |
| 46818.8-d3 |
46818.8-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{20} \cdot 17^{6} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$0.791062607$ |
$0.424449596$ |
3.798760962 |
\( \frac{21406940170}{60886809} a - \frac{61807844839}{243547236} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 76 a - 144\) , \( -666 a + 1566\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(76a-144\right){x}-666a+1566$ |
| 46818.8-d4 |
46818.8-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{28} \cdot 17^{6} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$1.582125214$ |
$0.212224798$ |
3.798760962 |
\( -\frac{208995993887450}{44386483761} a + \frac{92858826184591}{88772967522} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -1004 a - 54\) , \( -11736 a + 11592\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-1004a-54\right){x}-11736a+11592$ |
| 46818.8-d5 |
46818.8-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2 \cdot 3^{44} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$3.164250428$ |
$0.106112399$ |
3.798760962 |
\( \frac{689132974759173725}{163244272086018} a + \frac{92030074203444902}{81622136043009} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -3299 a + 3006\) , \( -23211 a - 155178\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-3299a+3006\right){x}-23211a-155178$ |
| 46818.8-d6 |
46818.8-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{16} \cdot 17^{9} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1.582125214$ |
$0.212224798$ |
3.798760962 |
\( -\frac{132789029221532066}{188345450907} a + \frac{141186623119318075}{376690901814} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 1156 a - 3114\) , \( -37980 a + 60804\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(1156a-3114\right){x}-37980a+60804$ |
| 46818.8-e1 |
46818.8-e |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{18} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.792387896$ |
$0.896277065$ |
4.017492791 |
\( -\frac{10134163}{31212} a + \frac{189430291}{62424} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -47 a + 15\) , \( -41 a + 119\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-47a+15\right){x}-41a+119$ |
| 46818.8-e2 |
46818.8-e |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{21} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1.584775793$ |
$0.448138532$ |
4.017492791 |
\( -\frac{1258183485493}{842724} a + \frac{1945154445061}{421362} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -677 a + 195\) , \( -3695 a + 10343\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-677a+195\right){x}-3695a+10343$ |
| 46818.8-f1 |
46818.8-f |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{9} \cdot 3^{15} \cdot 17^{2} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$1.130924560$ |
$1.295167223$ |
4.142900227 |
\( -\frac{226719}{544} a + \frac{33345}{272} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -2 a - 20\) , \( 8 a - 54\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a-20\right){x}+8a-54$ |
| 46818.8-g1 |
46818.8-g |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{9} \cdot 3^{12} \cdot 17^{6} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.396508680$ |
2.242991812 |
\( \frac{3211264065267}{2672672} a - \frac{97299436113}{668168} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 261 a + 1011\) , \( 8904 a - 6811\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(261a+1011\right){x}+8904a-6811$ |
| 46818.8-g2 |
46818.8-g |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{18} \cdot 3^{12} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.793017360$ |
2.242991812 |
\( -\frac{22586499}{36992} a - \frac{35754561}{147968} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 21 a + 51\) , \( 216 a - 91\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(21a+51\right){x}+216a-91$ |
| 46818.8-h1 |
46818.8-h |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2 \cdot 3^{20} \cdot 17^{9} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$3.164250428$ |
$0.106112399$ |
3.798760962 |
\( \frac{28973973968878862165}{10170654348978} a - \frac{227019597633725057126}{5085327174489} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 15988 a - 1674\) , \( 721701 a + 821106\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(15988a-1674\right){x}+721701a+821106$ |
| 46818.8-h2 |
46818.8-h |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{16} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.395531303$ |
$0.848899193$ |
3.798760962 |
\( -\frac{63405599}{7803} a - \frac{2377909445}{124848} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -77 a + 36\) , \( -90 a + 450\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-77a+36\right){x}-90a+450$ |
| 46818.8-h3 |
46818.8-h |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{20} \cdot 17^{6} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$0.791062607$ |
$0.424449596$ |
3.798760962 |
\( -\frac{21406940170}{60886809} a - \frac{61807844839}{243547236} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -77 a - 144\) , \( 666 a + 1566\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-77a-144\right){x}+666a+1566$ |
| 46818.8-h4 |
46818.8-h |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{28} \cdot 17^{6} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$1.582125214$ |
$0.212224798$ |
3.798760962 |
\( \frac{208995993887450}{44386483761} a + \frac{92858826184591}{88772967522} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 1003 a - 54\) , \( 11736 a + 11592\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(1003a-54\right){x}+11736a+11592$ |
| 46818.8-h5 |
46818.8-h |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2 \cdot 3^{44} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$3.164250428$ |
$0.106112399$ |
3.798760962 |
\( -\frac{689132974759173725}{163244272086018} a + \frac{92030074203444902}{81622136043009} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 3298 a + 3006\) , \( 23211 a - 155178\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(3298a+3006\right){x}+23211a-155178$ |
| 46818.8-h6 |
46818.8-h |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{16} \cdot 17^{9} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1.582125214$ |
$0.212224798$ |
3.798760962 |
\( \frac{132789029221532066}{188345450907} a + \frac{141186623119318075}{376690901814} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -1157 a - 3114\) , \( 37980 a + 60804\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-1157a-3114\right){x}+37980a+60804$ |
| 46818.8-i1 |
46818.8-i |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{18} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.792387896$ |
$0.896277065$ |
4.017492791 |
\( \frac{10134163}{31212} a + \frac{189430291}{62424} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 46 a + 15\) , \( 41 a + 119\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(46a+15\right){x}+41a+119$ |
| 46818.8-i2 |
46818.8-i |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{21} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1.584775793$ |
$0.448138532$ |
4.017492791 |
\( \frac{1258183485493}{842724} a + \frac{1945154445061}{421362} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 676 a + 195\) , \( 3695 a + 10343\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(676a+195\right){x}+3695a+10343$ |
| 46818.8-j1 |
46818.8-j |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{9} \cdot 3^{12} \cdot 17^{6} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.396508680$ |
2.242991812 |
\( -\frac{3211264065267}{2672672} a - \frac{97299436113}{668168} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -260 a + 1012\) , \( -7892 a - 6290\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-260a+1012\right){x}-7892a-6290$ |
| 46818.8-j2 |
46818.8-j |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{18} \cdot 3^{12} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.793017360$ |
2.242991812 |
\( \frac{22586499}{36992} a - \frac{35754561}{147968} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -20 a + 52\) , \( -164 a - 50\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-20a+52\right){x}-164a-50$ |
| 46818.8-k1 |
46818.8-k |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{16} \cdot 17^{16} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$6.825015489$ |
$0.061251382$ |
4.729601183 |
\( -\frac{491411892194497}{125563633938} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -14796\) , \( 835434\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-14796{x}+835434$ |
| 46818.8-k2 |
46818.8-k |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2 \cdot 3^{14} \cdot 17^{20} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$13.65003097$ |
$0.030625691$ |
4.729601183 |
\( -\frac{61437923106397764191713}{291967151254001210886} a - \frac{146204680417750243067160}{48661191875666868481} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( 38745 a - 8316\) , \( 3718953 a + 3437478\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(38745a-8316\right){x}+3718953a+3437478$ |
| 46818.8-k3 |
46818.8-k |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2 \cdot 3^{14} \cdot 17^{20} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$13.65003097$ |
$0.030625691$ |
4.729601183 |
\( \frac{61437923106397764191713}{291967151254001210886} a - \frac{146204680417750243067160}{48661191875666868481} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -38745 a - 8316\) , \( -3718953 a + 3437478\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-38745a-8316\right){x}-3718953a+3437478$ |
| 46818.8-k4 |
46818.8-k |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{44} \cdot 17^{2} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$3.412507744$ |
$0.122502764$ |
4.729601183 |
\( \frac{1276229915423}{2927177028} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( 2034\) , \( 60264\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+2034{x}+60264$ |
| 46818.8-k5 |
46818.8-k |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{28} \cdot 17^{4} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$1.706253872$ |
$0.245005529$ |
4.729601183 |
\( \frac{163936758817}{30338064} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -1026\) , \( 10692\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-1026{x}+10692$ |
| 46818.8-k6 |
46818.8-k |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{16} \cdot 3^{20} \cdot 17^{2} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$3.412507744$ |
$0.490011059$ |
4.729601183 |
\( \frac{4354703137}{352512} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -306\) , \( -1836\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-306{x}-1836$ |
| 46818.8-k7 |
46818.8-k |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{20} \cdot 17^{8} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$3.412507744$ |
$0.122502764$ |
4.729601183 |
\( \frac{576615941610337}{27060804} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -15606\) , \( 754272\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-15606{x}+754272$ |
| 46818.8-k8 |
46818.8-k |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{16} \cdot 17^{4} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$6.825015489$ |
$0.061251382$ |
4.729601183 |
\( \frac{2361739090258884097}{5202} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -249696\) , \( 48087270\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-249696{x}+48087270$ |
| 46818.8-l1 |
46818.8-l |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{9} \cdot 3^{15} \cdot 17^{2} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$1.130924560$ |
$1.295167223$ |
4.142900227 |
\( \frac{226719}{544} a + \frac{33345}{272} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 3 a - 21\) , \( -28 a - 59\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(3a-21\right){x}-28a-59$ |
| 46818.8-m1 |
46818.8-m |
$2$ |
$3$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2 \cdot 3^{15} \cdot 17^{4} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$1.211325602$ |
1.713073095 |
\( \frac{15001729}{9826} a + \frac{21921853}{4913} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -28 a - 13\) , \( -68 a + 61\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-28a-13\right){x}-68a+61$ |
| 46818.8-m2 |
46818.8-m |
$2$ |
$3$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{9} \cdot 17^{4} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$1.211325602$ |
1.713073095 |
\( -\frac{14617424683}{19652} a + \frac{8141969531}{9826} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( 78 a - 17\) , \( 252 a + 245\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(78a-17\right){x}+252a+245$ |
| 46818.8-n1 |
46818.8-n |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2 \cdot 3^{23} \cdot 17^{2} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$1.468398076$ |
$0.937654098$ |
7.788636801 |
\( \frac{15611652125}{6022998} a - \frac{2454677125}{3011499} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -19 a - 58\) , \( -145 a - 135\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-19a-58\right){x}-145a-135$ |
| 46818.8-o1 |
46818.8-o |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{9} \cdot 3^{12} \cdot 17^{6} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3^{2} \) |
$0.390117407$ |
$0.396508680$ |
7.875271360 |
\( -\frac{3211264065267}{2672672} a - \frac{97299436113}{668168} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -248 a - 1019\) , \( 4640 a + 12223\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-248a-1019\right){x}+4640a+12223$ |
| 46818.8-o2 |
46818.8-o |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{18} \cdot 3^{12} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3^{2} \) |
$0.195058703$ |
$0.793017360$ |
7.875271360 |
\( \frac{22586499}{36992} a - \frac{35754561}{147968} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -8 a - 59\) , \( 128 a + 223\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-8a-59\right){x}+128a+223$ |
| 46818.8-p1 |
46818.8-p |
$2$ |
$3$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2 \cdot 3^{15} \cdot 17^{4} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$1.211325602$ |
1.713073095 |
\( -\frac{15001729}{9826} a + \frac{21921853}{4913} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 28 a - 14\) , \( 55 a + 5\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(28a-14\right){x}+55a+5$ |
| 46818.8-p2 |
46818.8-p |
$2$ |
$3$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{9} \cdot 17^{4} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$1.211325602$ |
1.713073095 |
\( \frac{14617424683}{19652} a + \frac{8141969531}{9826} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -78 a - 17\) , \( -252 a + 245\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-78a-17\right){x}-252a+245$ |
| 46818.8-q1 |
46818.8-q |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{9} \cdot 3^{12} \cdot 17^{6} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3^{2} \) |
$0.390117407$ |
$0.396508680$ |
7.875271360 |
\( \frac{3211264065267}{2672672} a - \frac{97299436113}{668168} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 247 a - 1019\) , \( -4641 a + 12223\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(247a-1019\right){x}-4641a+12223$ |
| 46818.8-q2 |
46818.8-q |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{18} \cdot 3^{12} \cdot 17^{3} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3^{2} \) |
$0.195058703$ |
$0.793017360$ |
7.875271360 |
\( -\frac{22586499}{36992} a - \frac{35754561}{147968} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 7 a - 59\) , \( -129 a + 223\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(7a-59\right){x}-129a+223$ |
| 46818.8-r1 |
46818.8-r |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2 \cdot 3^{23} \cdot 17^{2} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$1.468398076$ |
$0.937654098$ |
7.788636801 |
\( -\frac{15611652125}{6022998} a - \frac{2454677125}{3011499} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 19 a - 59\) , \( 87 a - 173\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(19a-59\right){x}+87a-173$ |
| 46818.8-s1 |
46818.8-s |
$8$ |
$12$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{9} \cdot 3^{22} \cdot 17^{15} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{6} \cdot 3^{4} \) |
$1$ |
$0.023103774$ |
2.352504294 |
\( -\frac{795638018697416056308875}{122322703950862781472} a - \frac{740752568391229768255000}{3822584498464461921} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -77040 a + 200605\) , \( 21906720 a + 28585379\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-77040a+200605\right){x}+21906720a+28585379$ |
| 46818.8-s2 |
46818.8-s |
$8$ |
$12$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
46818.8 |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( 2^{9} \cdot 3^{22} \cdot 17^{15} \) |
$3.71781$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{6} \cdot 3^{4} \) |
$1$ |
$0.023103774$ |
2.352504294 |
\( \frac{795638018697416056308875}{122322703950862781472} a - \frac{740752568391229768255000}{3822584498464461921} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( 77040 a + 200605\) , \( -21906720 a + 28585379\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(77040a+200605\right){x}-21906720a+28585379$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.