Properties

Label 2.0.8.1-43218.2-b1
Base field \(\Q(\sqrt{-2}) \)
Conductor norm \( 43218 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+{x}^{2}-34864{x}+2503936\)
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([0,0]),K([-34864,0]),K([2503936,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,0]),Polrev([0,0]),Polrev([-34864,0]),Polrev([2503936,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,0],K![0,0],K![-34864,0],K![2503936,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((147a)\) = \((a)\cdot(-a-1)\cdot(a-1)\cdot(7)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 43218 \) = \(2\cdot3\cdot3\cdot49^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-27768446877696)\) = \((a)^{30}\cdot(-a-1)\cdot(a-1)\cdot(7)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 771086641999424731182268416 \) = \(2^{30}\cdot3\cdot3\cdot49^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{16591834777}{98304} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1593269792}{7371225} : -\frac{211766293888}{20012875875} a + \frac{796634896}{7371225} : 1\right)$
Height \(18.993473304683321544798687045577261999\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 18.993473304683321544798687045577261999 \)
Period: \( 0.058440408879411520357936436215353314813 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.1395154890278062160870236741728127013 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(2\) \(I_{30}\) Non-split multiplicative \(1\) \(1\) \(30\) \(30\)
\((-a-1)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((a-1)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((7)\) \(49\) \(1\) \(II^{*}\) Additive \(1\) \(2\) \(10\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 43218.2-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 294.a1
\(\Q\) 9408.bm1