Properties

Label 2.0.8.1-41616.5-k1
Base field \(\Q(\sqrt{-2}) \)
Conductor norm \( 41616 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+a{x}^{2}+\left(-12a-18\right){x}-6a+102\)
sage: E = EllipticCurve([K([0,0]),K([0,1]),K([0,0]),K([-18,-12]),K([102,-6])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,1]),Polrev([0,0]),Polrev([-18,-12]),Polrev([102,-6])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,1],K![0,0],K![-18,-12],K![102,-6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((204)\) = \((a)^{4}\cdot(-a-1)\cdot(a-1)\cdot(-2a+3)\cdot(2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41616 \) = \(2^{4}\cdot3\cdot3\cdot17\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((483072a-4442304)\) = \((a)^{12}\cdot(-a-1)^{9}\cdot(a-1)\cdot(-2a+3)^{3}\cdot(2a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 20200781942784 \) = \(2^{12}\cdot3^{9}\cdot3\cdot17^{3}\cdot17\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{14811123712}{96702579} a + \frac{26737709056}{96702579} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a - 1 : -4 a - 11 : 1\right)$
Height \(1.1870194535848561374031567412964431802\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.1870194535848561374031567412964431802 \)
Period: \( 1.0821819303842347862160081761073499638 \)
Tamagawa product: \( 3 \)  =  \(1\cdot1\cdot1\cdot3\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 5.4499732057238163991110538577207207325 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(II^{*}\) Additive \(1\) \(4\) \(12\) \(0\)
\((-a-1)\) \(3\) \(1\) \(I_{9}\) Non-split multiplicative \(1\) \(1\) \(9\) \(9\)
\((a-1)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-2a+3)\) \(17\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((2a+3)\) \(17\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 41616.5-k consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.