Properties

Label 2.0.8.1-41616.5-j4
Base field \(\Q(\sqrt{-2}) \)
Conductor norm \( 41616 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-19a-87\right){x}+120a+278\)
sage: E = EllipticCurve([K([0,1]),K([-1,1]),K([0,1]),K([-87,-19]),K([278,120])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,1]),Polrev([0,1]),Polrev([-87,-19]),Polrev([278,120])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,1],K![0,1],K![-87,-19],K![278,120]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((204)\) = \((a)^{4}\cdot(-a-1)\cdot(a-1)\cdot(-2a+3)\cdot(2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41616 \) = \(2^{4}\cdot3\cdot3\cdot17\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-730320a+28611408)\) = \((a)^{8}\cdot(-a-1)^{2}\cdot(a-1)\cdot(-2a+3)\cdot(2a+3)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 819679402347264 \) = \(2^{8}\cdot3^{2}\cdot3\cdot17\cdot17^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{101880880164700}{62781816969} a + \frac{119089242546332}{62781816969} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{37}{2} a + \frac{13}{4} : 79 a - \frac{567}{8} : 1\right)$
Height \(4.8275894668509379449285316031359636935\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a + \frac{7}{2} : -\frac{9}{4} a + 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 4.8275894668509379449285316031359636935 \)
Period: \( 0.76104937564857616545818758098904427184 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2\cdot1\cdot1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 5.1958686401923680237317553115804319736 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(I_0^{*}\) Additive \(1\) \(4\) \(8\) \(0\)
\((-a-1)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a-1)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-2a+3)\) \(17\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((2a+3)\) \(17\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 41616.5-j consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.