Base field \(\Q(\sqrt{-2}) \)
Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
gp: K = nfinit(Polrev([2, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,0]),K([89158,34240]),K([-8469742,6490880])])
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,0]),Polrev([89158,34240]),Polrev([-8469742,6490880])], K);
magma: E := EllipticCurve([K![0,1],K![1,0],K![0,0],K![89158,34240],K![-8469742,6490880]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((204)\) | = | \((a)^{4}\cdot(-a-1)\cdot(a-1)\cdot(-2a+3)\cdot(2a+3)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 41616 \) | = | \(2^{4}\cdot3\cdot3\cdot17\cdot17\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((420792346874880a+18302538350592)\) | = | \((a)^{21}\cdot(-a-1)^{8}\cdot(a-1)^{2}\cdot(-2a+3)^{3}\cdot(2a+3)^{12}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 354467381287013555132656779264 \) | = | \(2^{21}\cdot3^{8}\cdot3^{2}\cdot17^{3}\cdot17^{12}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{795638018697416056308875}{122322703950862781472} a - \frac{740752568391229768255000}{3822584498464461921} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(-\frac{9004547328}{137428729} a + \frac{2298087951135}{26936030884} : -\frac{503890782160613525}{631542180106264} a - \frac{8182058300901473015}{4420795260743848} : 1\right)$ |
Height | \(18.879461748163909778440107247889587313\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-128 a + \frac{71}{2} : -\frac{71}{4} a - 128 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 18.879461748163909778440107247889587313 \) | ||
Period: | \( 0.034655661243444931366936081676238121903 \) | ||
Tamagawa product: | \( 16 \) = \(2\cdot2\cdot2\cdot1\cdot2\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 3.7011679039764952941272628899277629300 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((a)\) | \(2\) | \(2\) | \(I_{13}^{*}\) | Additive | \(1\) | \(4\) | \(21\) | \(9\) |
\((-a-1)\) | \(3\) | \(2\) | \(I_{8}\) | Non-split multiplicative | \(1\) | \(1\) | \(8\) | \(8\) |
\((a-1)\) | \(3\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
\((-2a+3)\) | \(17\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
\((2a+3)\) | \(17\) | \(2\) | \(I_{12}\) | Non-split multiplicative | \(1\) | \(1\) | \(12\) | \(12\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3, 4, 6 and 12.
Its isogeny class
41616.5-e
consists of curves linked by isogenies of
degrees dividing 12.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.