Learn more

Refine search

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.


Results (32 matches)

  Download to        
Label Base field Conductor Isogeny class Weierstrass coefficients
36864.2-a1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-a \( \bigl[0\) , \( -1\) , \( 0\) , \( 2 a - 3\) , \( 2 a - 1\bigr] \)
36864.2-a2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-a \( \bigl[0\) , \( -1\) , \( 0\) , \( -2 a - 3\) , \( -2 a - 1\bigr] \)
36864.2-b1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-b \( \bigl[0\) , \( -1\) , \( 0\) , \( -a\) , \( -a + 2\bigr] \)
36864.2-b2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-b \( \bigl[0\) , \( -1\) , \( 0\) , \( a - 6\) , \( a - 4\bigr] \)
36864.2-c1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-c \( \bigl[0\) , \( -1\) , \( 0\) , \( a\) , \( a + 2\bigr] \)
36864.2-c2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-c \( \bigl[0\) , \( -1\) , \( 0\) , \( -a - 6\) , \( -a - 4\bigr] \)
36864.2-d1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-d \( \bigl[0\) , \( -1\) , \( 0\) , \( -22 a - 3\) , \( -22 a - 1\bigr] \)
36864.2-d2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-d \( \bigl[0\) , \( -1\) , \( 0\) , \( 22 a - 3\) , \( 22 a - 1\bigr] \)
36864.2-e1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-e \( \bigl[0\) , \( a\) , \( 0\) , \( 2 a\) , \( 4 a + 4\bigr] \)
36864.2-e2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-e \( \bigl[0\) , \( a\) , \( 0\) , \( -2 a + 12\) , \( -8 a - 4\bigr] \)
36864.2-f1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-f \( \bigl[0\) , \( a\) , \( 0\) , \( -a + 1\) , \( a + 2\bigr] \)
36864.2-f2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-f \( \bigl[0\) , \( a\) , \( 0\) , \( a + 1\) , \( a - 2\bigr] \)
36864.2-g1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-g \( \bigl[0\) , \( a\) , \( 0\) , \( 11 a + 1\) , \( a - 22\bigr] \)
36864.2-g2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-g \( \bigl[0\) , \( a\) , \( 0\) , \( -11 a + 1\) , \( a + 22\bigr] \)
36864.2-h1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-h \( \bigl[0\) , \( a\) , \( 0\) , \( -2 a\) , \( 4 a - 4\bigr] \)
36864.2-h2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-h \( \bigl[0\) , \( a\) , \( 0\) , \( 2 a + 12\) , \( -8 a + 4\bigr] \)
36864.2-i1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-i \( \bigl[0\) , \( -a\) , \( 0\) , \( -2 a\) , \( -4 a + 4\bigr] \)
36864.2-i2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-i \( \bigl[0\) , \( -a\) , \( 0\) , \( 2 a + 12\) , \( 8 a - 4\bigr] \)
36864.2-j1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-j \( \bigl[0\) , \( -a\) , \( 0\) , \( 11 a + 1\) , \( -a + 22\bigr] \)
36864.2-j2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-j \( \bigl[0\) , \( -a\) , \( 0\) , \( -11 a + 1\) , \( -a - 22\bigr] \)
36864.2-k1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-k \( \bigl[0\) , \( -a\) , \( 0\) , \( -a + 1\) , \( -a - 2\bigr] \)
36864.2-k2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-k \( \bigl[0\) , \( -a\) , \( 0\) , \( a + 1\) , \( -a + 2\bigr] \)
36864.2-l1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-l \( \bigl[0\) , \( -a\) , \( 0\) , \( 2 a\) , \( -4 a - 4\bigr] \)
36864.2-l2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-l \( \bigl[0\) , \( -a\) , \( 0\) , \( -2 a + 12\) , \( 8 a + 4\bigr] \)
36864.2-m1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-m \( \bigl[0\) , \( 1\) , \( 0\) , \( -22 a - 3\) , \( 22 a + 1\bigr] \)
36864.2-m2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-m \( \bigl[0\) , \( 1\) , \( 0\) , \( 22 a - 3\) , \( -22 a + 1\bigr] \)
36864.2-n1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-n \( \bigl[0\) , \( 1\) , \( 0\) , \( a\) , \( -a - 2\bigr] \)
36864.2-n2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-n \( \bigl[0\) , \( 1\) , \( 0\) , \( -a - 6\) , \( a + 4\bigr] \)
36864.2-o1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-o \( \bigl[0\) , \( 1\) , \( 0\) , \( -a\) , \( a - 2\bigr] \)
36864.2-o2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-o \( \bigl[0\) , \( 1\) , \( 0\) , \( a - 6\) , \( -a + 4\bigr] \)
36864.2-p1 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-p \( \bigl[0\) , \( 1\) , \( 0\) , \( 2 a - 3\) , \( -2 a + 1\bigr] \)
36864.2-p2 \(\Q(\sqrt{-2}) \) 36864.2 36864.2-p \( \bigl[0\) , \( 1\) , \( 0\) , \( -2 a - 3\) , \( 2 a + 1\bigr] \)
  Download to