Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
29241.8-a1 29241.8-a \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.053945323$ $0.544114833$ 3.244020840 \( \frac{67419143}{390963} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 76\) , \( -790\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+76{x}-790$
29241.8-a2 29241.8-a \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.053945323$ $2.176459332$ 3.244020840 \( \frac{389017}{57} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -14\) , \( 20\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-14{x}+20$
29241.8-a3 29241.8-a \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.526972661$ $1.088229666$ 3.244020840 \( \frac{30664297}{3249} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -59\) , \( -142\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-59{x}-142$
29241.8-a4 29241.8-a \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.053945323$ $0.544114833$ 3.244020840 \( \frac{115714886617}{1539} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -914\) , \( -10402\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-914{x}-10402$
29241.8-b1 29241.8-b \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $2.033701819$ $0.311769669$ 3.586708887 \( -\frac{50357871050752}{19} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( -6924\) , \( 221760\bigr] \) ${y}^2+{y}={x}^{3}-6924{x}+221760$
29241.8-b2 29241.8-b \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.677900606$ $0.935309008$ 3.586708887 \( -\frac{89915392}{6859} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( -84\) , \( 315\bigr] \) ${y}^2+{y}={x}^{3}-84{x}+315$
29241.8-b3 29241.8-b \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.225966868$ $2.805927025$ 3.586708887 \( \frac{32768}{19} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 6\) , \( 0\bigr] \) ${y}^2+{y}={x}^{3}+6{x}$
29241.8-c1 29241.8-c \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.972489132$ $1.171350742$ 9.848094932 \( -\frac{69965056}{3249} a - \frac{14926784}{3249} \) \( \bigl[a\) , \( -1\) , \( a + 1\) , \( 19 a - 56\) , \( -100 a + 181\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(19a-56\right){x}-100a+181$
29241.8-c2 29241.8-c \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.486244566$ $1.171350742$ 9.848094932 \( -\frac{2546432}{29241} a - \frac{2656192}{29241} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( 10 a + 6\) , \( 4 a - 85\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(10a+6\right){x}+4a-85$
29241.8-d1 29241.8-d \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.941130653$ $1.776214705$ 9.456281006 \( -\frac{1404928}{171} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( -21\) , \( -41\bigr] \) ${y}^2+{y}={x}^{3}-21{x}-41$
29241.8-e1 29241.8-e \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $19.80313271$ $0.090588610$ 10.14804730 \( -\frac{9358714467168256}{22284891} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( -39513\) , \( 3023145\bigr] \) ${y}^2+{y}={x}^{3}-39513{x}+3023145$
29241.8-e2 29241.8-e \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $3.960626542$ $0.452943050$ 10.14804730 \( \frac{841232384}{1121931} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 177\) , \( 1035\bigr] \) ${y}^2+{y}={x}^{3}+177{x}+1035$
29241.8-f1 29241.8-f \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.972489132$ $1.171350742$ 9.848094932 \( \frac{69965056}{3249} a - \frac{14926784}{3249} \) \( \bigl[a\) , \( -1\) , \( a + 1\) , \( -20 a - 56\) , \( 99 a + 181\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-20a-56\right){x}+99a+181$
29241.8-f2 29241.8-f \(\Q(\sqrt{-2}) \) \( 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.486244566$ $1.171350742$ 9.848094932 \( \frac{2546432}{29241} a - \frac{2656192}{29241} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( -11 a + 6\) , \( -4 a - 85\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-11a+6\right){x}-4a-85$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.