Properties

Base field \(\Q(\sqrt{-2}) \)
Label 2.0.8.1-288.2-a6
Conductor \((12 a)\)
Conductor norm \( 288 \)
CM no
base-change yes: 96.a1,192.a1
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^2 + 2)
 
gp: K = nfinit(a^2 + 2);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\(y^2+axy+ay=x^{3}+x^{2}-7x+8\)
sage: E = EllipticCurve(K, [a, 1, a, -7, 8])
 
gp: E = ellinit([a, 1, a, -7, 8],K)
 
magma: E := ChangeRing(EllipticCurve([a, 1, a, -7, 8]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((12 a)\) = \( \left(a\right)^{5} \cdot \left(-a - 1\right) \cdot \left(a - 1\right) \)
sage: E.conductor()
 
magma: Conductor(E);
 
\(N(\mathfrak{N}) \) = \( 288 \) = \( 2^{5} \cdot 3^{2} \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
\(\mathfrak{D}\) = \((24)\) = \( \left(a\right)^{6} \cdot \left(-a - 1\right) \cdot \left(a - 1\right) \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
\(N(\mathfrak{D})\) = \( 576 \) = \( 2^{6} \cdot 3^{2} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
\(j\) = \( \frac{7301384}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 1 \)

sage: E.rank()
 
magma: Rank(E);
 

Generator: $\left(\frac{7}{4} : -\frac{11}{8} a - \frac{5}{8} : 1\right)$

sage: gens = E.gens(); gens
 
magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 

Height: 1.35160373441208

sage: [P.height() for P in gens]
 
magma: [Height(P):P in gens];
 

Regulator: 1.35160373441208

sage: E.regulator_of_points(gens)
 
magma: Regulator(gens);
 

Torsion subgroup

Structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Generator: $\left(1 : -a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a\right) \) \(2\) \(2\) \(III\) Additive \(1\) \(5\) \(6\) \(0\)
\( \left(-a - 1\right) \) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\( \left(a - 1\right) \) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 288.2-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is the base-change of elliptic curves 96.a1, 192.a1, defined over \(\Q\), so it is also a \(\Q\)-curve.