Learn more

Refine search


Results (46 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
24336.2-a1 24336.2-a \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.996842954$ $3.067520634$ 2.162216804 \( -\frac{256000}{507} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -3\) , \( 6\bigr] \) ${y}^2={x}^{3}-{x}^{2}-3{x}+6$
24336.2-a2 24336.2-a \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.498421477$ $3.067520634$ 2.162216804 \( \frac{137842000}{117} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -17\) , \( -30\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-17{x}-30$
24336.2-b1 24336.2-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.290412728$ 1.824919182 \( -\frac{34153369600}{62178597} a - \frac{43076829184}{62178597} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 10 a + 19\) , \( -40 a + 38\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(10a+19\right){x}-40a+38$
24336.2-b2 24336.2-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.290412728$ 1.824919182 \( \frac{582894288160}{369603} a + \frac{400569131728}{369603} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 40 a + 91\) , \( 209 a - 301\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(40a+91\right){x}+209a-301$
24336.2-c1 24336.2-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.492709306$ $1.882955324$ 5.248144329 \( \frac{16384000}{9477} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -13\) , \( 4\bigr] \) ${y}^2={x}^{3}-{x}^{2}-13{x}+4$
24336.2-c2 24336.2-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.970837224$ $0.627651774$ 5.248144329 \( \frac{181037698000}{14480427} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -186\) , \( -945\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-186{x}-945$
24336.2-c3 24336.2-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.970837224$ $1.882955324$ 5.248144329 \( \frac{1409938000}{4563} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -36\) , \( 81\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-36{x}+81$
24336.2-c4 24336.2-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.492709306$ $0.627651774$ 5.248144329 \( \frac{2725888000000}{19773} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -733\) , \( 7888\bigr] \) ${y}^2={x}^{3}-{x}^{2}-733{x}+7888$
24336.2-d1 24336.2-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $3.911822885$ $1.332286356$ 3.685205968 \( \frac{48668}{85683} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 2\) , \( -56\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+2{x}-56$
24336.2-d2 24336.2-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.977955721$ $2.664572713$ 3.685205968 \( \frac{2725888}{1053} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -7\) , \( -2\bigr] \) ${y}^2={x}^{3}-{x}^{2}-7{x}-2$
24336.2-d3 24336.2-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.955911442$ $2.664572713$ 3.685205968 \( \frac{61918288}{1521} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -13\) , \( -20\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-13{x}-20$
24336.2-d4 24336.2-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.911822885$ $1.332286356$ 3.685205968 \( \frac{62275269892}{39} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -208\) , \( -1190\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-208{x}-1190$
24336.2-e1 24336.2-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.987391756$ $2.159942461$ 3.035363226 \( \frac{702464}{4563} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 5\) , \( -14\bigr] \) ${y}^2={x}^{3}-{x}^{2}+5{x}-14$
24336.2-e2 24336.2-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.993695878$ $2.159942461$ 3.035363226 \( \frac{94875856}{9477} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -15\) , \( 18\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-15{x}+18$
24336.2-f1 24336.2-f \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.290412728$ 1.824919182 \( \frac{34153369600}{62178597} a - \frac{43076829184}{62178597} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -10 a + 19\) , \( 40 a + 38\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-10a+19\right){x}+40a+38$
24336.2-f2 24336.2-f \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.290412728$ 1.824919182 \( -\frac{582894288160}{369603} a + \frac{400569131728}{369603} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -40 a + 91\) , \( -209 a - 301\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-40a+91\right){x}-209a-301$
24336.2-g1 24336.2-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.855633616$ $0.643404292$ 5.262425598 \( -\frac{253048096475372}{559607373} a - \frac{218119524144004}{559607373} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -75 a - 347\) , \( 720 a + 2642\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-75a-347\right){x}+720a+2642$
24336.2-g2 24336.2-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.963908404$ $0.643404292$ 5.262425598 \( \frac{141982147868}{2313441} a - \frac{41954607644}{2313441} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -145 a - 157\) , \( -1088 a - 134\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-145a-157\right){x}-1088a-134$
24336.2-g3 24336.2-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.927816808$ $1.286808584$ 5.262425598 \( -\frac{417240032}{1108809} a + \frac{1399915568}{1108809} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -10 a - 22\) , \( -8 a + 55\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-10a-22\right){x}-8a+55$
24336.2-g4 24336.2-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.963908404$ $1.286808584$ 5.262425598 \( \frac{3919376384}{6908733} a + \frac{14220271616}{6908733} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 14 a + 22\) , \( 10 a - 49\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(14a+22\right){x}+10a-49$
24336.2-h1 24336.2-h \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.891832161$ 2.675454701 \( -\frac{1952763232}{13689} a - \frac{2882870192}{13689} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 23 a - 12\) , \( 42 a + 11\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(23a-12\right){x}+42a+11$
24336.2-h2 24336.2-h \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.891832161$ 2.675454701 \( -\frac{6957056}{85293} a + \frac{87197696}{85293} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 6 a - 8\) , \( -6 a - 15\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(6a-8\right){x}-6a-15$
24336.2-i1 24336.2-i \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.891832161$ 2.675454701 \( \frac{1952763232}{13689} a - \frac{2882870192}{13689} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -23 a - 12\) , \( -42 a + 11\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-23a-12\right){x}-42a+11$
24336.2-i2 24336.2-i \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.891832161$ 2.675454701 \( \frac{6957056}{85293} a + \frac{87197696}{85293} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -6 a - 8\) , \( 6 a - 15\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-6a-8\right){x}+6a-15$
24336.2-j1 24336.2-j \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.855633616$ $0.643404292$ 5.262425598 \( \frac{253048096475372}{559607373} a - \frac{218119524144004}{559607373} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 75 a - 347\) , \( -720 a + 2642\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(75a-347\right){x}-720a+2642$
24336.2-j2 24336.2-j \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.963908404$ $0.643404292$ 5.262425598 \( -\frac{141982147868}{2313441} a - \frac{41954607644}{2313441} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 145 a - 157\) , \( 1088 a - 134\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(145a-157\right){x}+1088a-134$
24336.2-j3 24336.2-j \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.927816808$ $1.286808584$ 5.262425598 \( \frac{417240032}{1108809} a + \frac{1399915568}{1108809} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 10 a - 22\) , \( 8 a + 55\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(10a-22\right){x}+8a+55$
24336.2-j4 24336.2-j \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.963908404$ $1.286808584$ 5.262425598 \( -\frac{3919376384}{6908733} a + \frac{14220271616}{6908733} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -14 a + 22\) , \( -10 a - 49\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-14a+22\right){x}-10a-49$
24336.2-k1 24336.2-k \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.780590085$ 2.673280886 \( \frac{12167}{39} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 3\) , \( -2\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+3{x}-2$
24336.2-k2 24336.2-k \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.890295042$ 2.673280886 \( \frac{10218313}{1521} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -17\) , \( -22\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-17{x}-22$
24336.2-k3 24336.2-k \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.945147521$ 2.673280886 \( \frac{822656953}{85683} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -77\) , \( 254\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-77{x}+254$
24336.2-k4 24336.2-k \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.945147521$ 2.673280886 \( \frac{37159393753}{1053} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -277\) , \( -1738\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-277{x}-1738$
24336.2-l1 24336.2-l \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.220408588$ $1.091420708$ 6.854410053 \( \frac{269676572}{257049} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 35\) , \( 56\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+35{x}+56$
24336.2-l2 24336.2-l \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.110204294$ $2.182841417$ 6.854410053 \( \frac{37642192}{13689} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -10\) , \( 11\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-10{x}+11$
24336.2-l3 24336.2-l \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.555102147$ $1.091420708$ 6.854410053 \( \frac{3044193988}{85293} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -75\) , \( -236\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-75{x}-236$
24336.2-l4 24336.2-l \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.220408588$ $2.182841417$ 6.854410053 \( \frac{420616192}{117} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -39\) , \( -108\bigr] \) ${y}^2={x}^{3}+{x}^{2}-39{x}-108$
24336.2-m1 24336.2-m \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.675228376$ $3.874235061$ 7.328782477 \( \frac{686000}{507} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 4\) , \( -1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+4{x}-1$
24336.2-m2 24336.2-m \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.337614188$ $3.874235061$ 7.328782477 \( \frac{256000}{117} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -3\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-3{x}$
24336.2-n1 24336.2-n \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.406751427$ $0.342059320$ 7.378647798 \( \frac{77366117936}{1172914587} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 142\) , \( 3209\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+142{x}+3209$
24336.2-n2 24336.2-n \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.203375713$ $0.342059320$ 7.378647798 \( \frac{1909913257984}{129730653} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -651\) , \( -6228\bigr] \) ${y}^2={x}^{3}+{x}^{2}-651{x}-6228$
24336.2-o1 24336.2-o \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.590171887$ 5.077269774 \( \frac{3631696}{507} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -5\) , \( -3\bigr] \) ${y}^2+a{x}{y}={x}^{3}-5{x}-3$
24336.2-o2 24336.2-o \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.590171887$ 5.077269774 \( \frac{1048576}{117} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -5\) , \( -6\bigr] \) ${y}^2={x}^{3}+{x}^{2}-5{x}-6$
24336.2-p1 24336.2-p \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.288515022$ 5.100273218 \( -\frac{822656953}{207028224} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -77\) , \( 5558\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-77{x}+5558$
24336.2-p2 24336.2-p \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.072128755$ 5.100273218 \( \frac{1416134368422073}{725251155408} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -9357\) , \( -116618\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-9357{x}-116618$
24336.2-p3 24336.2-p \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.144257511$ 5.100273218 \( \frac{242702053576633}{2554695936} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -5197\) , \( 143798\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-5197{x}+143798$
24336.2-p4 24336.2-p \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.072128755$ 5.100273218 \( \frac{986551739719628473}{111045168} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -82957\) , \( 9210614\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-82957{x}+9210614$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.