Properties

Label 2.0.8.1-23409.8-e2
Base field \(\Q(\sqrt{-2}) \)
Conductor norm \( 23409 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-605a+61\right){x}-4808a+8130\)
sage: E = EllipticCurve([K([1,1]),K([1,1]),K([1,0]),K([61,-605]),K([8130,-4808])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,1]),Polrev([1,0]),Polrev([61,-605]),Polrev([8130,-4808])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,1],K![1,0],K![61,-605],K![8130,-4808]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((153)\) = \((-a-1)^{2}\cdot(a-1)^{2}\cdot(-2a+3)\cdot(2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 23409 \) = \(3^{2}\cdot3^{2}\cdot17\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2495305764a+3445266393)\) = \((-a-1)^{12}\cdot(a-1)^{8}\cdot(-2a+3)^{6}\cdot(2a+3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 24322962230438477841 \) = \(3^{12}\cdot3^{8}\cdot17^{6}\cdot17^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{147770521717808}{17596287801} a - \frac{136210703475223}{17596287801} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-9 a - 23 : 75 a - 27 : 1\right)$
Height \(0.62778164726429139433232163214628850693\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-7 a - 13 : 10 a - 1 : 1\right)$ $\left(-\frac{23}{2} a - \frac{43}{4} : \frac{89}{8} a - \frac{53}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.62778164726429139433232163214628850693 \)
Period: \( 0.29542799449062779509252782142770182059 \)
Tamagawa product: \( 192 \)  =  \(2^{2}\cdot2^{2}\cdot( 2 \cdot 3 )\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 3.1474330830446412992487566227971113439 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-1)\) \(3\) \(4\) \(I_{6}^{*}\) Additive \(-1\) \(2\) \(12\) \(6\)
\((a-1)\) \(3\) \(4\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)
\((-2a+3)\) \(17\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((2a+3)\) \(17\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 23409.8-e consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.