Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
225.2-a1 |
225.2-a |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
225.2 |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{32} \cdot 5^{2} \) |
$0.97888$ |
$(-a-1), (a-1), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$0.558925428$ |
0.395219960 |
\( -\frac{147281603041}{215233605} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -110\) , \( -880\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-110{x}-880$ |
225.2-a2 |
225.2-a |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
225.2 |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{2} \cdot 5^{2} \) |
$0.97888$ |
$(-a-1), (a-1), (5)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 1 \) |
$1$ |
$8.942806850$ |
0.395219960 |
\( -\frac{1}{15} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( 0\) , \( 0\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}$ |
225.2-a3 |
225.2-a |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
225.2 |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{4} \cdot 5^{16} \) |
$0.97888$ |
$(-a-1), (a-1), (5)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.117850856$ |
0.395219960 |
\( \frac{4733169839}{3515625} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( 35\) , \( -28\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+35{x}-28$ |
225.2-a4 |
225.2-a |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
225.2 |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{8} \cdot 5^{8} \) |
$0.97888$ |
$(-a-1), (a-1), (5)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$2.235701712$ |
0.395219960 |
\( \frac{111284641}{50625} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -10\) , \( -10\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-10{x}-10$ |
225.2-a5 |
225.2-a |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
225.2 |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{4} \cdot 5^{4} \) |
$0.97888$ |
$(-a-1), (a-1), (5)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$4.471403425$ |
0.395219960 |
\( \frac{13997521}{225} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -5\) , \( 2\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-5{x}+2$ |
225.2-a6 |
225.2-a |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
225.2 |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{16} \cdot 5^{4} \) |
$0.97888$ |
$(-a-1), (a-1), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$1.117850856$ |
0.395219960 |
\( \frac{272223782641}{164025} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -135\) , \( -660\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-135{x}-660$ |
225.2-a7 |
225.2-a |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
225.2 |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{2} \cdot 5^{2} \) |
$0.97888$ |
$(-a-1), (a-1), (5)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$4$ |
\( 1 \) |
$1$ |
$2.235701712$ |
0.395219960 |
\( \frac{56667352321}{15} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -80\) , \( 242\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-80{x}+242$ |
225.2-a8 |
225.2-a |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
225.2 |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{8} \cdot 5^{2} \) |
$0.97888$ |
$(-a-1), (a-1), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$0.558925428$ |
0.395219960 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -2160\) , \( -39540\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-2160{x}-39540$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.