Learn more

Refine search


Results (12 matches)

  Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
19600.1-a1 19600.1-a \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.128582376$ $1.674108353$ 1.522123934 \( \frac{14155776}{84035} \) \( \bigl[0\) , \( 0\) , \( a\) , \( 8\) , \( 27\bigr] \) ${y}^2+a{y}={x}^{3}+8{x}+27$
19600.1-b1 19600.1-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.337321606$ $1.194888048$ 1.710045356 \( -\frac{225637236736}{1715} \) \( \bigl[0\) , \( -1\) , \( a\) , \( -201\) , \( -1032\bigr] \) ${y}^2+a{y}={x}^{3}-{x}^{2}-201{x}-1032$
19600.1-b2 19600.1-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.112440535$ $3.584664146$ 1.710045356 \( -\frac{65536}{875} \) \( \bigl[0\) , \( -1\) , \( a\) , \( -1\) , \( -2\bigr] \) ${y}^2+a{y}={x}^{3}-{x}^{2}-{x}-2$
19600.1-c1 19600.1-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.631888037$ $0.387487601$ 3.116416187 \( -\frac{250523582464}{13671875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -525\) , \( -4673\bigr] \) ${y}^2={x}^{3}-{x}^{2}-525{x}-4673$
19600.1-c2 19600.1-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.631888037$ $3.487388410$ 3.116416187 \( -\frac{262144}{35} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -5\) , \( 7\bigr] \) ${y}^2={x}^{3}-{x}^{2}-5{x}+7$
19600.1-c3 19600.1-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.210629345$ $1.162462803$ 3.116416187 \( \frac{71991296}{42875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 35\) , \( -25\bigr] \) ${y}^2={x}^{3}-{x}^{2}+35{x}-25$
19600.1-d1 19600.1-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.613941328$ $1.849974466$ 3.212459027 \( \frac{1367631}{2800} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 10\) , \( -22\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+10{x}-22$
19600.1-d2 19600.1-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.227882656$ $0.924987233$ 3.212459027 \( \frac{611960049}{122500} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -70\) , \( -150\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-70{x}-150$
19600.1-d3 19600.1-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/4\Z$ $2.455765312$ $0.462493616$ 3.212459027 \( \frac{74565301329}{5468750} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -350\) , \( 2538\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-350{x}+2538$
19600.1-d4 19600.1-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/4\Z$ $0.613941328$ $0.462493616$ 3.212459027 \( \frac{2121328796049}{120050} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -1070\) , \( -12950\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1070{x}-12950$
19600.1-e1 19600.1-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $6.146050106$ 4.345913707 \( -\frac{1024}{35} \) \( \bigl[0\) , \( 1\) , \( a\) , \( 0\) , \( 1\bigr] \) ${y}^2+a{y}={x}^{3}+{x}^{2}+1$
19600.1-f1 19600.1-f \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $0.914120687$ 9.695714049 \( -\frac{30211716096}{1071875} \) \( \bigl[0\) , \( 0\) , \( a\) , \( -103\) , \( 415\bigr] \) ${y}^2+a{y}={x}^{3}-103{x}+415$
  Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.