Properties

Label 2.0.8.1-13122.5-d3
Base field \(\Q(\sqrt{-2}) \)
Conductor norm \( 13122 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}-{x}^{2}-852{x}+19664\)
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([0,0]),K([-852,0]),K([19664,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-852,0]),Polrev([19664,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,0],K![0,0],K![-852,0],K![19664,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((81a)\) = \((a)\cdot(-a-1)^{4}\cdot(a-1)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 13122 \) = \(2\cdot3^{4}\cdot3^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-123834728448)\) = \((a)^{42}\cdot(-a-1)^{10}\cdot(a-1)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 15335039969789900488704 \) = \(2^{42}\cdot3^{10}\cdot3^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1159088625}{2097152} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{13432}{361} : -\frac{166912}{6859} a + \frac{6716}{361} : 1\right)$
Height \(6.3033591928263403393828260611075616332\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 6.3033591928263403393828260611075616332 \)
Period: \( 0.19449507328019625045627388386624374353 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.4675733304747480324358693131942067062 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(2\) \(I_{42}\) Non-split multiplicative \(1\) \(1\) \(42\) \(42\)
\((-a-1)\) \(3\) \(1\) \(IV^{*}\) Additive \(-1\) \(4\) \(10\) \(0\)
\((a-1)\) \(3\) \(1\) \(IV^{*}\) Additive \(-1\) \(4\) \(10\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cn
\(3\) 3B.1.2
\(7\) 7B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 7 and 21.
Its isogeny class 13122.5-d consists of curves linked by isogenies of degrees dividing 21.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 162.b2
\(\Q\) 5184.p2