Learn more

Refine search


Results (20 matches)

  Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
13122.5-a1 13122.5-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\mathsf{trivial}$ $1$ $1.514693616$ 1.071050127 \( -\frac{1737}{4} a + 2421 \) \( \bigl[1\) , \( -1\) , \( a\) , \( -14 a + 12\) , \( 22\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-14a+12\right){x}+22$
13122.5-a2 13122.5-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\Z/3\Z$ $1$ $4.544080848$ 1.071050127 \( -\frac{25263}{2} a + 2682 \) \( \bigl[1\) , \( -1\) , \( a\) , \( a - 3\) , \( -2 a + 3\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(a-3\right){x}-2a+3$
13122.5-b1 13122.5-b \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $1$ $\Z/3\Z$ $0.305934883$ $3.305583379$ 2.860369308 \( -\frac{35937}{4} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -6\) , \( 8\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-6{x}+8$
13122.5-b2 13122.5-b \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $1$ $\mathsf{trivial}$ $0.101978294$ $1.101861126$ 2.860369308 \( \frac{109503}{64} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 39\) , \( -19\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+39{x}-19$
13122.5-c1 13122.5-c \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\mathsf{trivial}$ $1$ $1.514693616$ 1.071050127 \( \frac{1737}{4} a + 2421 \) \( \bigl[1\) , \( -1\) , \( a\) , \( 13 a + 12\) , \( 22\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(13a+12\right){x}+22$
13122.5-c2 13122.5-c \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\Z/3\Z$ $1$ $4.544080848$ 1.071050127 \( \frac{25263}{2} a + 2682 \) \( \bigl[1\) , \( -1\) , \( a\) , \( -2 a - 3\) , \( 2 a + 3\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-2a-3\right){x}+2a+3$
13122.5-d1 13122.5-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $1$ $\Z/3\Z$ $2.101119730$ $0.583485219$ 3.467573330 \( -\frac{189613868625}{128} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -1077\) , \( 13877\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-1077{x}+13877$
13122.5-d2 13122.5-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $1$ $\mathsf{trivial}$ $0.900479884$ $1.361465512$ 3.467573330 \( -\frac{140625}{8} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -42\) , \( -100\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-42{x}-100$
13122.5-d3 13122.5-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $1$ $\mathsf{trivial}$ $6.303359192$ $0.194495073$ 3.467573330 \( -\frac{1159088625}{2097152} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -852\) , \( 19664\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-852{x}+19664$
13122.5-d4 13122.5-d \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $1$ $\Z/3\Z$ $0.300159961$ $4.084396538$ 3.467573330 \( \frac{3375}{2} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 3\) , \( -1\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+3{x}-1$
13122.5-e1 13122.5-e \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\mathsf{trivial}$ $1$ $0.194495073$ 1.925402993 \( -\frac{189613868625}{128} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -9695\) , \( -364985\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-9695{x}-364985$
13122.5-e2 13122.5-e \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\Z/3\Z$ $1$ $4.084396538$ 1.925402993 \( -\frac{140625}{8} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -5\) , \( 5\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-5{x}+5$
13122.5-e3 13122.5-e \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\Z/3\Z$ $1$ $0.583485219$ 1.925402993 \( -\frac{1159088625}{2097152} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -95\) , \( -697\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-95{x}-697$
13122.5-e4 13122.5-e \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\mathsf{trivial}$ $1$ $1.361465512$ 1.925402993 \( \frac{3375}{2} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 25\) , \( 1\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+25{x}+1$
13122.5-f1 13122.5-f \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\Z/3\Z$ $1$ $4.544080848$ 3.213150382 \( \frac{1737}{4} a + 2421 \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( a + 1\) , \( -a - 1\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(a+1\right){x}-a-1$
13122.5-f2 13122.5-f \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\mathsf{trivial}$ $1$ $1.514693616$ 3.213150382 \( \frac{25263}{2} a + 2682 \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -14 a - 29\) , \( -41 a - 39\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-14a-29\right){x}-41a-39$
13122.5-g1 13122.5-g \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\mathsf{trivial}$ $1$ $1.101861126$ 3.116533897 \( -\frac{35937}{4} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -56\) , \( -161\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-56{x}-161$
13122.5-g2 13122.5-g \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\Z/3\Z$ $1$ $3.305583379$ 3.116533897 \( \frac{109503}{64} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 4\) , \( -1\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+4{x}-1$
13122.5-h1 13122.5-h \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\Z/3\Z$ $1$ $4.544080848$ 3.213150382 \( -\frac{1737}{4} a + 2421 \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -2 a + 1\) , \( -1\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-2a+1\right){x}-1$
13122.5-h2 13122.5-h \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{8} \) $0$ $\mathsf{trivial}$ $1$ $1.514693616$ 3.213150382 \( -\frac{25263}{2} a + 2682 \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 13 a - 29\) , \( 40 a - 39\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(13a-29\right){x}+40a-39$
  Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.