Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1296.3-a1 1296.3-a \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $N(\mathrm{U}(1))$ $0.163308669$ $5.108115717$ 2.359472722 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -1\bigr] \) ${y}^2={x}^{3}-1$
1296.3-a2 1296.3-a \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-3$ $N(\mathrm{U}(1))$ $0.489926008$ $1.702705239$ 2.359472722 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 27\bigr] \) ${y}^2={x}^{3}+27$
1296.3-a3 1296.3-a \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-12$ $N(\mathrm{U}(1))$ $0.326617338$ $5.108115717$ 2.359472722 \( 54000 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -2\) , \( 5\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-2{x}+5$
1296.3-a4 1296.3-a \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) $1$ $\Z/2\Z$ $-12$ $N(\mathrm{U}(1))$ $0.979852016$ $1.702705239$ 2.359472722 \( 54000 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -32\) , \( -57\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-32{x}-57$
1296.3-b1 1296.3-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.605891169$ 1.713719018 \( \frac{207646}{6561} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 36\) , \( 572\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+36{x}+572$
1296.3-b2 1296.3-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.423564678$ 1.713719018 \( \frac{2048}{3} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 6\) , \( 7\bigr] \) ${y}^2={x}^{3}+6{x}+7$
1296.3-b3 1296.3-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.423564678$ 1.713719018 \( \frac{35152}{9} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -9\) , \( -4\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-9{x}-4$
1296.3-b4 1296.3-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.211782339$ 1.713719018 \( \frac{1556068}{81} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -54\) , \( 176\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-54{x}+176$
1296.3-b5 1296.3-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.302945584$ 1.713719018 \( -\frac{2327042746553}{43046721} a + \frac{2081263802600}{43046721} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 630 a + 756\) , \( -3276 a + 14324\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(630a+756\right){x}-3276a+14324$
1296.3-b6 1296.3-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.302945584$ 1.713719018 \( \frac{2327042746553}{43046721} a + \frac{2081263802600}{43046721} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -630 a + 756\) , \( 3276 a + 14324\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-630a+756\right){x}+3276a+14324$
1296.3-b7 1296.3-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.211782339$ 1.713719018 \( \frac{28756228}{3} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -144\) , \( -598\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-144{x}-598$
1296.3-b8 1296.3-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.605891169$ 1.713719018 \( \frac{3065617154}{9} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -864\) , \( 10220\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-864{x}+10220$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.