Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
11552.2-a1 11552.2-a \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.071171000$ $5.963775842$ 2.401039863 \( \frac{27000}{19} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 3\) , \( 0\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+3{x}$
11552.2-b1 11552.2-b \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.319679844$ $4.296507316$ 3.884863868 \( \frac{64}{19} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -1\) , \( a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}-{x}+a$
11552.2-c1 11552.2-c \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.029707001$ $0.603483608$ 5.070716035 \( -\frac{4741632}{2476099} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -14\) , \( 606\bigr] \) ${y}^2={x}^{3}-14{x}+606$
11552.2-d1 11552.2-d \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.109359759$ $4.183446943$ 5.176030150 \( -\frac{13824}{19} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 2\bigr] \) ${y}^2={x}^{3}-2{x}+2$
11552.2-e1 11552.2-e \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.317256616$ $4.183446943$ 3.753962649 \( -\frac{13824}{19} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( -2\bigr] \) ${y}^2={x}^{3}-2{x}-2$
11552.2-f1 11552.2-f \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 19^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.603483608$ 1.706909408 \( -\frac{4741632}{2476099} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -14\) , \( -606\bigr] \) ${y}^2={x}^{3}-14{x}-606$
11552.2-g1 11552.2-g \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.319679844$ $4.296507316$ 3.884863868 \( \frac{64}{19} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -1\) , \( -a\bigr] \) ${y}^2={x}^{3}-a{x}^{2}-{x}-a$
11552.2-h1 11552.2-h \(\Q(\sqrt{-2}) \) \( 2^{5} \cdot 19^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $5.963775842$ 8.434052680 \( \frac{27000}{19} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 2\) , \( -1\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+2{x}-1$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.