11552.2-a1
11552.2-a
1 1 1
1 1 1
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
11552.2
2 5 ⋅ 1 9 2 2^{5} \cdot 19^{2} 2 5 ⋅ 1 9 2
2 6 ⋅ 1 9 2 2^{6} \cdot 19^{2} 2 6 ⋅ 1 9 2
2.62028 2.62028 2 . 6 2 0 2 8
( a ) , ( − 3 a + 1 ) , ( 3 a + 1 ) (a), (-3a+1), (3a+1) ( a ) , ( − 3 a + 1 ) , ( 3 a + 1 )
2 2 2
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
1 1 1
2 2 2
0.071171000 0.071171000 0 . 0 7 1 1 7 1 0 0 0
5.963775842 5.963775842 5 . 9 6 3 7 7 5 8 4 2
2.401039863
27000 19 \frac{27000}{19} 1 9 2 7 0 0 0
[ a \bigl[a [ a , − 1 -1 − 1 , a a a , 3 3 3 , 0 ] 0\bigr] 0 ]
y 2 + a x y + a y = x 3 − x 2 + 3 x {y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+3{x} y 2 + a x y + a y = x 3 − x 2 + 3 x
11552.2-b1
11552.2-b
1 1 1
1 1 1
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
11552.2
2 5 ⋅ 1 9 2 2^{5} \cdot 19^{2} 2 5 ⋅ 1 9 2
2 12 ⋅ 1 9 2 2^{12} \cdot 19^{2} 2 1 2 ⋅ 1 9 2
2.62028 2.62028 2 . 6 2 0 2 8
( a ) , ( − 3 a + 1 ) , ( 3 a + 1 ) (a), (-3a+1), (3a+1) ( a ) , ( − 3 a + 1 ) , ( 3 a + 1 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2
0.319679844 0.319679844 0 . 3 1 9 6 7 9 8 4 4
4.296507316 4.296507316 4 . 2 9 6 5 0 7 3 1 6
3.884863868
64 19 \frac{64}{19} 1 9 6 4
[ 0 \bigl[0 [ 0 , a a a , 0 0 0 , − 1 -1 − 1 , a ] a\bigr] a ]
y 2 = x 3 + a x 2 − x + a {y}^2={x}^{3}+a{x}^{2}-{x}+a y 2 = x 3 + a x 2 − x + a
11552.2-c1
11552.2-c
1 1 1
1 1 1
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
11552.2
2 5 ⋅ 1 9 2 2^{5} \cdot 19^{2} 2 5 ⋅ 1 9 2
2 12 ⋅ 1 9 10 2^{12} \cdot 19^{10} 2 1 2 ⋅ 1 9 1 0
2.62028 2.62028 2 . 6 2 0 2 8
( a ) , ( − 3 a + 1 ) , ( 3 a + 1 ) (a), (-3a+1), (3a+1) ( a ) , ( − 3 a + 1 ) , ( 3 a + 1 )
2 2 2
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
5 5 5
5Ns
1 1 1
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
0.029707001 0.029707001 0 . 0 2 9 7 0 7 0 0 1
0.603483608 0.603483608 0 . 6 0 3 4 8 3 6 0 8
5.070716035
− 4741632 2476099 -\frac{4741632}{2476099} − 2 4 7 6 0 9 9 4 7 4 1 6 3 2
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 14 -14 − 1 4 , 606 ] 606\bigr] 6 0 6 ]
y 2 = x 3 − 14 x + 606 {y}^2={x}^{3}-14{x}+606 y 2 = x 3 − 1 4 x + 6 0 6
11552.2-d1
11552.2-d
1 1 1
1 1 1
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
11552.2
2 5 ⋅ 1 9 2 2^{5} \cdot 19^{2} 2 5 ⋅ 1 9 2
2 12 ⋅ 1 9 2 2^{12} \cdot 19^{2} 2 1 2 ⋅ 1 9 2
2.62028 2.62028 2 . 6 2 0 2 8
( a ) , ( − 3 a + 1 ) , ( 3 a + 1 ) (a), (-3a+1), (3a+1) ( a ) , ( − 3 a + 1 ) , ( 3 a + 1 )
2 2 2
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
1 1 1
2 2 2^{2} 2 2
0.109359759 0.109359759 0 . 1 0 9 3 5 9 7 5 9
4.183446943 4.183446943 4 . 1 8 3 4 4 6 9 4 3
5.176030150
− 13824 19 -\frac{13824}{19} − 1 9 1 3 8 2 4
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 2 -2 − 2 , 2 ] 2\bigr] 2 ]
y 2 = x 3 − 2 x + 2 {y}^2={x}^{3}-2{x}+2 y 2 = x 3 − 2 x + 2
11552.2-e1
11552.2-e
1 1 1
1 1 1
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
11552.2
2 5 ⋅ 1 9 2 2^{5} \cdot 19^{2} 2 5 ⋅ 1 9 2
2 12 ⋅ 1 9 2 2^{12} \cdot 19^{2} 2 1 2 ⋅ 1 9 2
2.62028 2.62028 2 . 6 2 0 2 8
( a ) , ( − 3 a + 1 ) , ( 3 a + 1 ) (a), (-3a+1), (3a+1) ( a ) , ( − 3 a + 1 ) , ( 3 a + 1 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
1 1 1
2 2 2
0.317256616 0.317256616 0 . 3 1 7 2 5 6 6 1 6
4.183446943 4.183446943 4 . 1 8 3 4 4 6 9 4 3
3.753962649
− 13824 19 -\frac{13824}{19} − 1 9 1 3 8 2 4
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 2 -2 − 2 , − 2 ] -2\bigr] − 2 ]
y 2 = x 3 − 2 x − 2 {y}^2={x}^{3}-2{x}-2 y 2 = x 3 − 2 x − 2
11552.2-f1
11552.2-f
1 1 1
1 1 1
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
11552.2
2 5 ⋅ 1 9 2 2^{5} \cdot 19^{2} 2 5 ⋅ 1 9 2
2 12 ⋅ 1 9 10 2^{12} \cdot 19^{10} 2 1 2 ⋅ 1 9 1 0
2.62028 2.62028 2 . 6 2 0 2 8
( a ) , ( − 3 a + 1 ) , ( 3 a + 1 ) (a), (-3a+1), (3a+1) ( a ) , ( − 3 a + 1 ) , ( 3 a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
5 5 5
5Ns
1 1 1
2 2 2^{2} 2 2
1 1 1
0.603483608 0.603483608 0 . 6 0 3 4 8 3 6 0 8
1.706909408
− 4741632 2476099 -\frac{4741632}{2476099} − 2 4 7 6 0 9 9 4 7 4 1 6 3 2
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 14 -14 − 1 4 , − 606 ] -606\bigr] − 6 0 6 ]
y 2 = x 3 − 14 x − 606 {y}^2={x}^{3}-14{x}-606 y 2 = x 3 − 1 4 x − 6 0 6
11552.2-g1
11552.2-g
1 1 1
1 1 1
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
11552.2
2 5 ⋅ 1 9 2 2^{5} \cdot 19^{2} 2 5 ⋅ 1 9 2
2 12 ⋅ 1 9 2 2^{12} \cdot 19^{2} 2 1 2 ⋅ 1 9 2
2.62028 2.62028 2 . 6 2 0 2 8
( a ) , ( − 3 a + 1 ) , ( 3 a + 1 ) (a), (-3a+1), (3a+1) ( a ) , ( − 3 a + 1 ) , ( 3 a + 1 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2
0.319679844 0.319679844 0 . 3 1 9 6 7 9 8 4 4
4.296507316 4.296507316 4 . 2 9 6 5 0 7 3 1 6
3.884863868
64 19 \frac{64}{19} 1 9 6 4
[ 0 \bigl[0 [ 0 , − a -a − a , 0 0 0 , − 1 -1 − 1 , − a ] -a\bigr] − a ]
y 2 = x 3 − a x 2 − x − a {y}^2={x}^{3}-a{x}^{2}-{x}-a y 2 = x 3 − a x 2 − x − a
11552.2-h1
11552.2-h
1 1 1
1 1 1
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
11552.2
2 5 ⋅ 1 9 2 2^{5} \cdot 19^{2} 2 5 ⋅ 1 9 2
2 6 ⋅ 1 9 2 2^{6} \cdot 19^{2} 2 6 ⋅ 1 9 2
2.62028 2.62028 2 . 6 2 0 2 8
( a ) , ( − 3 a + 1 ) , ( 3 a + 1 ) (a), (-3a+1), (3a+1) ( a ) , ( − 3 a + 1 ) , ( 3 a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
1 1 1
2 2 2
1 1 1
5.963775842 5.963775842 5 . 9 6 3 7 7 5 8 4 2
8.434052680
27000 19 \frac{27000}{19} 1 9 2 7 0 0 0
[ a \bigl[a [ a , − 1 -1 − 1 , 0 0 0 , 2 2 2 , − 1 ] -1\bigr] − 1 ]
y 2 + a x y = x 3 − x 2 + 2 x − 1 {y}^2+a{x}{y}={x}^{3}-{x}^{2}+2{x}-1 y 2 + a x y = x 3 − x 2 + 2 x − 1